skip to main content


Title: Microestimates of wealth for all low- and middle-income countries
Many critical policy decisions, from strategic investments to the allocation of humanitarian aid, rely on data about the geographic distribution of wealth and poverty. Yet many poverty maps are out of date or exist only at very coarse levels of granularity. Here we develop microestimates of the relative wealth and poverty of the populated surface of all 135 low- and middle-income countries (LMICs) at 2.4 km resolution. The estimates are built by applying machine-learning algorithms to vast and heterogeneous data from satellites, mobile phone networks, and topographic maps, as well as aggregated and deidentified connectivity data from Facebook. We train and calibrate the estimates using nationally representative household survey data from 56 LMICs and then validate their accuracy using four independent sources of household survey data from 18 countries. We also provide confidence intervals for each microestimate to facilitate responsible downstream use. These estimates are provided free for public use in the hope that they enable targeted policy response to the COVID-19 pandemic, provide the foundation for insights into the causes and consequences of economic development and growth, and promote responsible policymaking in support of sustainable development.  more » « less
Award ID(s):
1942702
PAR ID:
10418102
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
119
Issue:
3
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Poverty maps derived from satellite imagery are increasingly used to inform high-stakes policy decisions, such as the allocation of humanitarian aid and the distribution of government resources. Such poverty maps are typically constructed by training machine learning algorithms on a relatively modest amount of “ground truth” data from surveys, and then predicting poverty levels in areas where imagery exists but surveys do not. Using survey and satellite data from ten countries, this paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines, and shows how these phenomena affect the validity of policies based on predicted maps. Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions. 
    more » « less
  2. Poverty maps derived from satellite imagery are increasingly used to inform high-stakes policy decisions, such as the allocation of humanitarian aid and the distribution of government resources. Such poverty maps are typically constructed by training machine learning algorithms on a relatively modest amount of “ground truth” data from surveys, and then predicting poverty levels in areas where imagery exists but surveys do not. Using survey and satellite data from ten countries, this paper investigates disparities in representation, systematic biases in prediction errors, and fairness concerns in satellite-based poverty mapping across urban and rural lines, and shows how these phenomena affect the validity of policies based on predicted maps. Our findings highlight the importance of careful error and bias analysis before using satellite-based poverty maps in real-world policy decisions. 
    more » « less
  3. Abstract

    Accurate and comprehensive measurements of economic well-being are fundamental inputs into both research and policy, but such measures are unavailable at a local level in many parts of the world. Here we train deep learning models to predict survey-based estimates of asset wealth across ~ 20,000 African villages from publicly-available multispectral satellite imagery. Models can explain 70% of the variation in ground-measured village wealth in countries where the model was not trained, outperforming previous benchmarks from high-resolution imagery, and comparison with independent wealth measurements from censuses suggests that errors in satellite estimates are comparable to errors in existing ground data. Satellite-based estimates can also explain up to 50% of the variation in district-aggregated changes in wealth over time, with daytime imagery particularly useful in this task. We demonstrate the utility of satellite-based estimates for research and policy, and demonstrate their scalability by creating a wealth map for Africa’s most populous country.

     
    more » « less
  4. null (Ed.)
    Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a "big push" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations. 
    more » « less
  5. Abstract

    Social scientists have increasingly used asset‐based wealth scores, like the Demographic and Health Survey (DHS) wealth index, to assess economic disparities. However, current indices primarily capture wealth in globalized market economies, thus ignoring other forms of prosperity, such as success in agricultural activities. Using a simple extension to the standard estimation of the DHS wealth index, we describe procedures for estimating an agricultural wealth index (AWI) that complements market‐based wealth indices by capturing household success in agricultural activities. We apply this procedure to household data from 129 DHS surveys from over 40 countries with sufficient land and livestock data to estimate a reliable and consistent AWI. We assess the construct validity of the AWI using benchmarks of growth in both adults and children. This alternative measure of wealth provides new opportunities for understanding the causes and consequences of wealth inequality, and how success along different dimensions of wealth creates different social opportunities and constraints for health and well‐being.

     
    more » « less