skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Searching for an Intruder on Graphs and Their Subdivisions
In this paper we analyze a variant of the pursuit-evasion game on a graph $$G$$ where the intruder occupies a vertex, is allowed to move to adjacent vertices or remain in place, and is 'invisible' to the searcher, meaning that the searcher operates with no knowledge of the position of the intruder. On each stage, the searcher is allowed to inspect an arbitrary set of $$k$$ vertices. The minimum $$k$$ for which the searcher can guarantee the capture of the intruder is called the inspection number of $$G$$. We also introduce and study the topological inspection number, a quantity that captures the limiting behavior of the inspection number under subdivisions of $$G$$. Our central theorem provides a full classification of graphs with topological inspection number up to $$3$$.  more » « less
Award ID(s):
2045412
PAR ID:
10418228
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
29
Issue:
3
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large. 
    more » « less
  2. null (Ed.)
    We consider a variant of the planted clique problem where we are allowed unbounded computational time but can only investigate a small part of the graph by adaptive edge queries. We determine (up to logarithmic factors) the number of queries necessary both for detecting the presence of a planted clique and for finding the planted clique. Specifically, let $$G \sim G(n,1/2,k)$$ be a random graph on $$n$$ vertices with a planted clique of size $$k$$. We show that no algorithm that makes at most $q = o(n^2 / k^2 + n)$ adaptive queries to the adjacency matrix of $$G$$ is likely to find the planted clique. On the other hand, when $$k \geq (2+\epsilon) \log_2 n$$ there exists a simple algorithm (with unbounded computational power) that finds the planted clique with high probability by making $$q = O( (n^2 / k^2) \log^2 n + n \log n)$$ adaptive queries. For detection, the additive $$n$$ term is not necessary: the number of queries needed to detect the presence of a planted clique is $n^2 / k^2$ (up to logarithmic factors). 
    more » « less
  3. null (Ed.)
    Abstract For a real constant α , let $$\pi _3^\alpha (G)$$ be the minimum of twice the number of K 2 ’s plus α times the number of K 3 ’s over all edge decompositions of G into copies of K 2 and K 3 , where K r denotes the complete graph on r vertices. Let $$\pi _3^\alpha (n)$$ be the maximum of $$\pi _3^\alpha (G)$$ over all graphs G with n vertices. The extremal function $$\pi _3^3(n)$$ was first studied by Győri and Tuza ( Studia Sci. Math. Hungar. 22 (1987) 315–320). In recent progress on this problem, Král’, Lidický, Martins and Pehova ( Combin. Probab. Comput. 28 (2019) 465–472) proved via flag algebras that $$\pi _3^3(n) \le (1/2 + o(1)){n^2}$$ . We extend their result by determining the exact value of $$\pi _3^\alpha (n)$$ and the set of extremal graphs for all α and sufficiently large n . In particular, we show for α = 3 that K n and the complete bipartite graph $${K_{\lfloor n/2 \rfloor,\lceil n/2 \rceil }}$$ are the only possible extremal examples for large n . 
    more » « less
  4. Topological Data Analysis (TDA) studies the “shape” of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K = (V, E) in R^2, i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less
  5. Topological Data Analysis (TDA) studies the shape of data. A common topological descriptor is the persistence diagram, which encodes topological features in a topological space at different scales. Turner, Mukeherjee, and Boyer showed that one can reconstruct a simplicial complex embedded in R^3 using persistence diagrams generated from all possible height filtrations (an uncountably infinite number of directions). In this paper, we present an algorithm for reconstructing plane graphs K=(V,E) in R^2 , i.e., a planar graph with vertices in general position and a straight-line embedding, from a quadratic number height filtrations and their respective persistence diagrams. 
    more » « less