skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: CompOSE reference manual: Version 3.01, CompStar Online Supernovæ Equations of State, “harmonising the concert of nuclear physics and astrophysics”, https://compose.obspm.fr
Abstract CompOSE (CompStar Online Supernovae Equations of State) is an online repository of equations of state (EoS) for use in nuclear physics and astrophysics, e.g., in the description of compact stars or the simulation of core-collapse supernovae and neutron-star mergers, see . The main services, offered via the website, are: a collection of data tables in a flexible and easily extendable data format for different EoS types and related physical quantities with extensive documentation and referencing; software for download to extract and to interpolate these data and to calculate additional quantities; webtools to generate EoS tables that are customized to the needs of the users and to illustrate dependencies of various EoS quantities in graphical form. This manual is an update of previous versions that are available on the CompOSE website, at , and that was originally published in the journal “Physics of Particles and Nuclei” with . It contains a detailed description of the service, containing a general introduction as well as instructions for potential contributors and for users. Short versions of the manual for EoS users and providers will also be available as separate publications. Graphical Abstract  more » « less
Award ID(s):
1748621
PAR ID:
10418333
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The European Physical Journal A
Volume:
58
Issue:
11
ISSN:
1434-601X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ab initio molecular dynamics (AIMD) simulations have become an important tool used in the construction of equations of state (EOS) tables for warm dense matter. Due to computational costs, only a limited number of system state conditions can be simulated, and the remaining EOS surface must be interpolated for use in radiation-hydrodynamic simulations of experiments. In this work, we develop a thermodynamically consistent EOS model that utilizes a physics-informed machine learning approach to implicitly learn the underlying Helmholtz free-energy from AIMD generated energies and pressures. The model, referred to as PIML-EOS, was trained and tested on warm dense polystyrene producing a fit within a 1% relative error for both energy and pressure and is shown to satisfy both the Maxwell and Gibbs–Duhem relations. In addition, we provide a path toward obtaining thermodynamic quantities, such as the total entropy and chemical potential (containing both ionic and electronic contributions), which are not available from current AIMD simulations. 
    more » « less
  2. null (Ed.)
    Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 3,324 new measurements from 878 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on High Energy Soft QCD and Diffraction and one on the Determination of CKM Angles from B Hadrons. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 98 review articles. Volume 2 consists of the Particle Listings and contains also 22 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print and as a web version optimized for use on phones as well as an Android app. 
    more » « less
  3. Abstract The Review summarizes much of particle physics and cosmology. Using data from previous editions, plus 2,143 new measurements from 709 papers, we list, evaluate, and average measured properties of gauge bosons and the recently discovered Higgs boson, leptons, quarks, mesons, and baryons. We summarize searches for hypothetical particles such as supersymmetric particles, heavy bosons, axions, dark photons, etc. Particle properties and search limits are listed in Summary Tables. We give numerous tables, figures, formulae, and reviews of topics such as Higgs Boson Physics, Supersymmetry, Grand Unified Theories, Neutrino Mixing, Dark Energy, Dark Matter, Cosmology, Particle Detectors, Colliders, Probability and Statistics. Among the 120 reviews are many that are new or heavily revised, including a new review on Machine Learning, and one on Spectroscopy of Light Meson Resonances. The Review is divided into two volumes. Volume 1 includes the Summary Tables and 97 review articles. Volume 2 consists of the Particle Listings and contains also 23 reviews that address specific aspects of the data presented in the Listings. The complete Review (both volumes) is published online on the website of the Particle Data Group (pdg.lbl.gov) and in a journal. Volume 1 is available in print as the PDG Book. A Particle Physics Booklet with the Summary Tables and essential tables, figures, and equations from selected review articles is available in print, as a web version optimized for use on phones, and as an Android app. 
    more » « less
  4. We present a combination of two quick guides aimed at summarizing relevant information about the CompOSE nuclear equation of state repository. The first is aimed at nuclear physicists and describes how to provide standard equation of state tables. The second quick guide is meant for users and describes the basic procedures to obtain customized tables with equation of state data. Several examples are included to help providers and users to understand and benefit from the CompOSE database. 
    more » « less
  5. Abstract In this paper, we aim to explore novel machine learning (ML) techniques to facilitate and accelerate the construction of universal equation-Of-State (EOS) models with a high accuracy while ensuring important thermodynamic consistency. When applying ML to fit a universal EOS model, there are two key requirements: (1) a high prediction accuracy to ensure precise estimation of relevant physics properties and (2) physical interpretability to support important physics-related downstream applications. We first identify a set of fundamental challenges from the accuracy perspective, including an extremely wide range of input/output space and highly sparse training data. We demonstrate that while a neural network (NN) model may fit the EOS data well, the black-box nature makes it difficult to provide physically interpretable results, leading to weak accountability of prediction results outside the training range and lack of guarantee to meet important thermodynamic consistency constraints. To this end, we propose a principled deep regression model that can be trained following a meta-learning style to predict the desired quantities with a high accuracy using scarce training data. We further introduce a uniquely designed kernel-based regularizer for accurate uncertainty quantification. An ensemble technique is leveraged to battle model overfitting with improved prediction stability. Auto-differentiation is conducted to verify that necessary thermodynamic consistency conditions are maintained. Our evaluation results show an excellent fit of the EOS table and the predicted values are ready to use for important physics-related tasks. 
    more » « less