skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spectral phase effects in above threshold ionization
Abstract We present theoretical studies of above threshold ionization (ATI) using sculpted laser pulses. The time-dependent Schrödinger equation is solved to calculate the ATI energy and momentum spectra, and a qualitative understanding of the electron motion after ionization is explored using the simple man’s model and a classical model that solves Newton’s equation of motion. Results are presented for Gaussian and Airy laser pulses with identical power spectra, but differing spectral phases. The simulations show that the third order spectral phase of the Airy pulse, which can alter the temporal envelope of the electric field, causes changes to the timing of ionization and the dynamics of the rescattering process. Specifically, the use of Airy pulses in the ATI process results in a shift of the Keldysh plateau cutoff to lower energy due to a decreased pondermotive energy of the electron in the laser field, and the side lobes of the Airy laser pulse change the number and timing of rescattering events. This translates into changes to the high-order ATI plateau and intra- and intercycle interference features. Our results also show that laser pulses with identical carrier envelope phases and nearly identical envelopes yield different photoelectron momentum distributions, which are a direct result of the pulse’s spectral phase.  more » « less
Award ID(s):
2207209
PAR ID:
10431077
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of Physics B: Atomic, Molecular and Optical Physics
Volume:
56
Issue:
9
ISSN:
0953-4075
Page Range / eLocation ID:
095601
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We report a method for the phase reconstruction of an ultrashort laser pulse based on the deep learning of the nonlinear spectral changes induce by self-phase modulation. The neural networks were trained on simulated pulses with random initial phases and spectra, with pulse durations between 8.5 and 65 fs. The reconstruction is valid with moderate spectral resolution, and is robust to noise. The method was validated on experimental data produced from an ultrafast laser system, where near real-time phase reconstructions were performed. This method can be used in systems with known linear and nonlinear responses, even when the fluence is not known, making this method ideal for difficult to measure beams such as the high energy, large aperture beams produced in petawatt systems. 
    more » « less
  2. Abstract The efficient generation, accurate detection, and detailed physical tracking of energetic electrons are of applied interest for high harmonics generation, electron-impact spectroscopy, and femtosecond time-resolved scanning tunneling microscopy. We here investigate the generation of photoelectrons (PEs) by exposing plasmonic nanostructures to intense laser pulses in the infrared (IR) spectral regime and analyze the sensitivity of PE spectra to competing elementary interactions for direct and rescattered photoemission pathways. Specifically, we measured and numerically simulated emitted PE momentum distributions from prototypical spherical gold nanoparticles (NPs) with diameters between 5 and 70 nm generated by short laser pulses with peak intensities of 8.0 × 10 12 and 1.2 × 10 13  W/cm 2 , demonstrating the shaping of PE spectra by the Coulomb repulsion between PEs, accumulating residual charges on the NP, and induced plasmonic electric fields. Compared to well-understood rescattering PE cutoff energies for strong-field photoemission from gaseous atomic targets (10× the ponderomotive energy), our measured and simulated PE spectra reveal a dramatic cutoff-energy increase of two orders of magnitude with a significantly higher contribution from direct photoemission. Our findings indicate that direct PEs reach up to 93 % of the rescattered electron cutoff energy, in contrast to 20 % for gaseous atoms, suggesting a novel scheme for the development of compact tunable tabletop electron sources. 
    more » « less
  3. Using the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMD) for nonsequential double ionization (NSDI) of Ar by near-single-cycle laser pulses with a wavelength of 750 nm at an intensity of 2.8 × 1014W/cm2. With the accurate cross sections obtained from fully quantum mechanical calculations for both electron impact excitation and electron impact ionization of Ar+, we unambiguously identify the contributions from recollision direct ionization (RDI) and recollision excitation with subsequent ionization (RESI). Our analysis reveals that RESI constitutes the main contribution to NSDI of Ar under the conditions considered here. The simulated results are directly compared with experimental measurements [Bergueset al.,Nat. Commun.3,813(2012)10.1038/ncomms1807] in which each NSDI event is tagged with the carrier-envelope phase (CEP). It is found that the overall pattern of both the CEP-resolved and the CEP-averaged CMDs measured in experiment are well reproduced by the QRS model, and the cross-shaped structure in the CEP-averaged CMD is attributed to the strong forward scattering of the recolliding electron as well as the depletion effect in tunneling ionization of the electron from an excited state of the parent ion. 
    more » « less
  4. Within the framework of the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization (NSDI) of Ar by elliptically polarized laser pulses with a wavelength of 788 nm at an intensity of 0.7 × 1014W/cm2for the ellipticities ranging from 0 to 0.3. Only the CMDs for recollision excitation with subsequent ionization (RESI) are calculated and the contribution from recollision direct ionization is neglected. According to the QRS model, the CMD for RESI can be factorized as a product of the parallel momentum distribution (PMD) for the first released electron after recollision and the PMD for the second electron ionized from an excited state of the parent ion. The PMD for the first electron is obtained from the laser-free differential cross sections for electron impact excitation of Ar+calculated using state-of-the-art many-electronR-matrix theory while that for the second electron is evaluated by solving the time-dependent Schrödinger equation. The results show that the CMDs for all the ellipticities considered here exhibit distinct anticorrelated back-to-back emission of the electrons along the major polarization direction, and the anticorrelation is more pronounced with increasing ellipticity. It is found that anticorrelation is attributed to the pattern of the PMD for the second electron ionized from the excited state that, in turn, is caused by the delayed recollision time with respect to the instant of the external field crossing. Our work shows that both the ionization potential of the excited parent ion and the laser intensity play important roles in the process. 
    more » « less
  5. Using the quantitative rescattering model, we simulate the correlated two-electron momentum distributions for nonsequential double ionization of helium by 800 nm laser pulses at intensities in the range of (2 − 15) × 1014W/cm2. The experimentally observed V-shaped structure at high intensities [Phys. Rev. Lett.99,263003(2007)10.1103/PhysRevLett.99.263003] is attributed to the strong forward scattering in laser-induced recollision excitation and the asymmetric momentum distribution of electrons that are tunneling-ionized from the excited states. The final-state electron repulsion also plays an important role in forming the V-shaped structure. 
    more » « less