Aμ-oxo vanadium(V) dimeric complex, μ-oxido-bis[(2,2′-{[ethane-1,2-diylbis(azanediyl)]bis(methylene)}diphenolato)oxidovanadium(V)], [V2(C16H18N2O2)2O3] (1), was crystallized by slow evaporation from an ethanol solution. Theμ-oxo dimer crystallizes in the monoclinic space groupC2/cwhere the salan ligand1acoordinates to the vanadium center in a κ2N,κ2Ofashion, forming a distorted octahedral geometry. The bridging oxo ligand lies on a crystallographic twofold axis. The unit cell consists of four molecules of1that are linked by C—H...·πareneinteractions as well as intramolecular hydrogen bonding.
more »
« less
Speciation and Photoluminescent Properties of a 2,6‐Bis(pyrrol‐2‐yl)pyridine in Three Protonation States
Abstract 2,6‐Bis(pyrrol‐2‐yl)pyridines are important building blocks for supramolecular assemblies and photoluminescent main group and transition metal compounds. Sterically encumbered 2,6‐bis(5‐(2,4,6‐trimethylphenyl)‐3‐phenyl‐1H‐pyrrol‐2‐yl)pyridine, H2MesPDPPh, can adopt monomeric and dimeric structures in the solid state and in solution, controlled by competing inter‐ and intramolecular hydrogen bonds. Deprotonation in the presence of lithium cations provides Li2MesPDPPh, which can be isolated in monomeric and dimeric forms depending on solvent polarity. Protonation of H2MesPDPPhdisrupts intramolecular hydrogen bonding and provides the monomeric pyridinium salt [H3MesPDPPh]Cl. Independent of solvent polarity, all three derivatives exhibit intense fluorescence in solution. The absorption and emission spectra are highly sensitive to the level of protonation, which can be rationalized by the effects of (de)protonation on the HOMO and LUMO of the tricyclic π‐system.
more »
« less
- Award ID(s):
- 1752738
- PAR ID:
- 10418515
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- ChemPhotoChem
- Volume:
- 7
- Issue:
- 8
- ISSN:
- 2367-0932
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The role of ligands in rhodium‐ and iridium‐catalyzedParahydrogen Induced Polarization (PHIP) and SABRE (signal amplification by reversible exchange) chemistry has been studied in the benchmark systems, [Rh(diene)(diphos)]+and [Ir(NHC)(sub)3(H)2]+, and shown to have a great impact on the degree of hyperpolarization observed. Here, we examine the role of the flanking moieties in the electron‐rich monoanionic bis(carbene) aryl pincer ligand,ArCCC (Ar=Dipp, 2,6‐diisopropyl or Mes, 2,4,6‐trimethylphenyl) on the cobalt‐catalyzed PHIP and PHIP‐IE (PHIP via Insertion and Elimination) chemistry that we have previously reported. The mesityl groups were exchanged for diisopropylphenyl groups to generate the (DippCCC)Co(N2) catalyst, which resulted in faster hydrogenation and up to 390‐fold1H signal enhancements, larger than that of the (MesCCC)Co‐py (py=pyridine) catalyst. Additionally, the synthesis of the (DippCCC)Rh(N2) complex is reported and applied towards the hydrogenation of ethyl acrylate withparahydrogen to generate modest signal enhancements of both1H and13C nuclei. Lastly, the generation of two (MesCCC)Ir complexes is presented and applied towards SABRE and PHIP‐IE chemistry to only yield small1H signal enhancements of the partially hydrogenated product (PHIP) with no SABRE hyperpolarization.more » « less
-
Abstract Hydrogenase enzymes produce H2gas, which can be a potential source of alternative energy. Inspired by the [NiFe] hydrogenases, we report the construction of a de novo‐designed artificial hydrogenase (ArH). The ArH is a dimeric coiled coil where two cysteine (Cys) residues are introduced at tandema/dpositions of a heptad to create a tetrathiolato Ni binding site. Spectroscopic studies show that Ni binding significantly stabilizes the peptide producing electronic transitions characteristic of Ni‐thiolate proteins. The ArH produces H2photocatalytically, demonstrating a bell‐shaped pH‐dependence on activity. Fluorescence lifetimes and transient absorption spectroscopic studies are undertaken to elucidate the nature of pH‐dependence, and to monitor the reaction kinetics of the photochemical processes. pH titrations are employed to determine the role of protonated Cys on reactivity. Through combining these results, a fine balance is found between solution acidity and the electron transfer steps. This balance is critical to maximize the production of NiI‐peptide and protonation of the NiII−H−intermediate (Ni−R) by a Cys (pKa≈6.4) to produce H2.more » « less
-
Abstract ortho‐Phosphinophenol (oPP) is an unusual example of an air‐stable primary phosphine and a valuable precursor to a variety of useful organophosphorus compounds. The presence of PH2and OH functionalities offers the possibility of intermolecular and intramolecular P⋅⋅⋅HO hydrogen bonding (HB). The close proximity of these two groups also offers the opportunity for intramolecular PH2⋅⋅⋅HO dihydrogen bonding (DHB). This work provides experimental and computational evidence for these various types of interactions. In the solid state,oPPis associated by significant intermolecular P⋅⋅⋅HO hydrogen bonds as revealed by a single crystal X‐ray structural determination. Multinuclear NMR and IR spectroscopic studies, coupled with DFT computational studies, suggest thatoPPadopts multiple conformations in solution whose nature varies with the identity of the solvent. In the gas phase or non‐polar solvents (such as cyclohexane) an equilibrium between four conformations ofoPPis proposed. Interestingly,in silico, a conformational isomer having bifurcated intramolecular PH2⋅⋅⋅HODHB(PP4) is found to be more stable than a conformational isomer having intramolecular P⋅⋅⋅HOHB(PP1). In polar solvents (S), NMR studies indicate intermolecular OH⋅⋅⋅S HBplays a dominant role in modulating31P NMR chemical shifts over a 17 ppm range.more » « less
-
Abstract Co‐crystallization of the spin‐crossover (SCO) cationic complex, [Fe(1‐bpp)2]2+(1‐bpp=2,6‐bis(pyrazol‐1‐yl)pyridine) with fractionally charged organic anion TCNQδ−(0<δ<1) afforded hybrid materials [Fe(1‐bpp)2](TCNQ)3.5 ⋅ 3.5MeCN (1) and [Fe(1‐bpp)2](TCNQ)4 ⋅ 4DCE (2), where TCNQ=7,7,8,8‐tetracyanoquinodimethane, MeCN=acetonitrile, and DCE=1,2‐dichloroethane. Both materials exhibit semiconducting behavior, with the room‐temperature conductivity values of 1.1×10−4 S/cm and 1.7×10−3 S/cm, respectively. The magnetic behavior of both complexes exhibits strong dependence on the content of the interstitial solvent. Complex1undergoes a gradual temperature‐driven SCO, with the midpoint temperature ofT1/2=234 K. The partial solvent loss by1leads to the increase in theT1/2value while complete desolvation renders the material high‐spin (HS) in the entire studied temperature range. In the case of2, the solvated complex shows a gradual SCO withT1/2=166 K only when covered with a mother liquid, while the facile loss of interstitial solvent, even at room temperature, leads to the HS‐only behavior.more » « less
An official website of the United States government
