skip to main content


Title: Learning Without Neurons in Physical Systems
Learning is traditionally studied in biological or computational systems. The power of learning frameworks in solving hard inverse problems provides an appealing case for the development of physical learning in which physical systems adopt desirable properties on their own without computational design. It was recently realized that large classes of physical systems can physically learn through local learning rules, autonomously adapting their parameters in response to observed examples of use. We review recent work in the emerging field of physical learning, describing theoretical and experimental advances in areas ranging from molecular self-assembly to flow networks and mechanical materials. Physical learning machines provide multiple practical advantages over computer designed ones, in particular by not requiring an accurate model of the system, and their ability to autonomously adapt to changing needs over time. As theoretical constructs, physical learning machines afford a novel perspective on how physical constraints modify abstract learning theory.  more » « less
Award ID(s):
2011854 2005749
PAR ID:
10418562
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Annual Review of Condensed Matter Physics
Volume:
14
Issue:
1
ISSN:
1947-5454
Page Range / eLocation ID:
417 to 441
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In the field of soft robotics, harnessing the nonlinear dynamics of soft and compliant bodies as a computational resource to enable embodied intelligence and control is known as morphological computation. Physical reservoir computing (PRC) is a true instance of morphological computation wherein; a physical nonlinear dynamic system is used as a fixed reservoir to perform complex computational tasks. These dynamic reservoirs can be used to approximate nonlinear dynamical systems and even perform machine learning tasks. By numerical simulation, this study illustrates that an origami meta-material can also be used as a dynamic reservoir for pattern generation, output modulation, and input sensing. These results could pave the way for intelligently designed origami-based robots that interact with the environment through a distributed network of sensors and actuators. This embodied intelligence will enable the next generations of soft robots to autonomously coordinate and modulate their activities, such as locomotion gait generation and limb manipulation while resisting external disturbances. 
    more » « less
  2. Machine learning has been proposed as an alternative to theoretical modeling when dealing with complex problems in biological physics. However, in this perspective, we argue that a more successful approach is a proper combination of these two methodologies. We discuss how ideas coming from physical modeling neuronal processing led to early formulations of computational neural networks, e.g., Hopfield networks. We then show how modern learning approaches like Potts models, Boltzmann machines, and the transformer architecture are related to each other, specifically, through a shared energy representation. We summarize recent efforts to establish these connections and provide examples on how each of these formulations integrating physical modeling and machine learning have been successful in tackling recent problems in biomolecular structure, dynamics, function, evolution, and design. Instances include protein structure prediction; improvement in computational complexity and accuracy of molecular dynamics simulations; better inference of the effects of mutations in proteins leading to improved evolutionary modeling and finally how machine learning is revolutionizing protein engineering and design. Going beyond naturally existing protein sequences, a connection to protein design is discussed where synthetic sequences are able to fold to naturally occurring motifs driven by a model rooted in physical principles. We show that this model is “learnable” and propose its future use in the generation of unique sequences that can fold into a target structure.

     
    more » « less
  3. Kernel methods provide an elegant framework for developing nonlinear learning algorithms from simple linear methods. Though these methods have superior empirical performance in several real data applications, their usefulness is inhibited by the significant computational burden incurred in large sample situations. Various approximation schemes have been proposed in the literature to alleviate these computational issues, and the approximate kernel machines are shown to retain the empirical performance. However, the theoretical properties of these approximate kernel machines are less well understood. In this work, we theoretically study the trade-off between computational complexity and statistical accuracy in Nystrom approximate kernel principal component analysis (KPCA), wherein we show that the Nystrom approximate KPCA matches the statistical performance of (non-approximate) KPCA while remaining computationally beneficial. Additionally, we show that Nystrom approximate KPCA outperforms the statistical behavior of another popular approximation scheme, the random feature approximation, when applied to KPCA. 
    more » « less
  4. null (Ed.)
    Abstract

    This paper studies the concept of manufacturing systems that autonomously learn how to build parts to a user-specified performance. To perform such a function, these manufacturing systems need to be adaptable to continually change their process or design parameters based on new data, have inline performance sensing to generate data, and have a cognition element to learn the correct process or design parameters to achieve the specified performance. Here, we study the cognition element, investigating a panel of supervised and reinforcement learning machine learning algorithms on a computational emulation of a manufacturing process, focusing on machine learning algorithms that perform well under a limited manufacturing, thus data generation, budget. The case manufacturing study is for the manufacture of an acoustic metamaterial and performance is defined by a metric of conformity with a desired acoustic transmission spectra. We find that offline supervised learning algorithms, which dominate the machine learning community, require an infeasible number of manufacturing observations to suitably optimize the manufacturing process. Online algorithms, which continually modify the parameter search space to focus in on favorable parameter sets, show the potential to optimize a manufacturing process under a considerably smaller manufacturing budget.

     
    more » « less
  5. We consider computational games, sequences of games G = (G1,G2,...) where, for all n, Gn has the same set of players. Computational games arise in electronic money systems such as Bitcoin, in cryptographic protocols, and in the study of generative adversarial networks in machine learning. Assuming that one-way functions exist, we prove that there is 2-player zero-sum computational game G such that, for all n, the size of the action space in Gn is polynomial in n and the utility function in Gn is computable in time polynomial in n, and yet there is no ε-Nash equilibrium if players are restricted to using strategies computable by polynomial-time Turing machines, where we use a notion of Nash equilibrium that is tailored to computational games. We also show that an ε-Nash equilibrium may not exist if players are constrained to perform at most T computational steps in each of the games in the sequence. On the other hand, we show that if players can use arbitrary Turing machines to compute their strategies, then every computational game has an ε-Nash equilibrium. These results may shed light on competitive settings where the availability of more running time or faster algorithms can lead to a “computational arms race”, precluding the existence of equilibrium. They also point to inherent limitations of concepts such as “best response” and Nash equilibrium in games with resource-bounded players. 
    more » « less