skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetic Reconnection as the Driver of the Solar Wind
Abstract We present EUV solar observations showing evidence for omnipresent jetting activity driven by small-scale magnetic reconnection at the base of the solar corona. We argue that the physical mechanism that heats and drives the solar wind at its source is ubiquitous magnetic reconnection in the form of small-scale jetting activity (a.k.a. jetlets). This jetting activity, like the solar wind and the heating of the coronal plasma, is ubiquitous regardless of the solar cycle phase. Each event arises from small-scale reconnection of opposite-polarity magnetic fields producing a short-lived jet of hot plasma and Alfvén waves into the corona. The discrete nature of these jetlet events leads to intermittent outflows from the corona, which homogenize as they propagate away from the Sun and form the solar wind. This discovery establishes the importance of small-scale magnetic reconnection in solar and stellar atmospheres in understanding ubiquitous phenomena such as coronal heating and solar wind acceleration. Based on previous analyses linking the switchbacks to the magnetic network, we also argue that these new observations might provide the link between the magnetic activity at the base of the corona and the switchback solar wind phenomenon. These new observations need to be put in the bigger picture of the role of magnetic reconnection and the diverse form of jetting in the solar atmosphere.  more » « less
Award ID(s):
2229064 1821294 2229336 2109083
PAR ID:
10418605
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
945
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The fast solar wind that fills the heliosphere originates from deep within regions of open magnetic field on the Sun called ‘coronal holes’. The energy source responsible for accelerating the plasma is widely debated; however, there is evidence that it is ultimately magnetic in nature, with candidate mechanisms including wave heating 1,2 and interchange reconnection 3–5 . The coronal magnetic field near the solar surface is structured on scales associated with ‘supergranulation’ convection cells, whereby descending flows create intense fields. The energy density in these ‘network’ magnetic field bundles is a candidate energy source for the wind. Here we report measurements of fast solar wind streams from the Parker Solar Probe (PSP) spacecraft 6 that provide strong evidence for the interchange reconnection mechanism. We show that the supergranulation structure at the coronal base remains imprinted in the near-Sun solar wind, resulting in asymmetric patches of magnetic ‘switchbacks’ 7,8 and bursty wind streams with power-law-like energetic ion spectra to beyond 100 keV. Computer simulations of interchange reconnection support key features of the observations, including the ion spectra. Important characteristics of interchange reconnection in the low corona are inferred from the data, including that the reconnection is collisionless and that the energy release rate is sufficient to power the fast wind. In this scenario, magnetic reconnection is continuous and the wind is driven by both the resulting plasma pressure and the radial Alfvénic flow bursts. 
    more » « less
  2. Abstract Magnetic reconnection is widely believed to be the fundamental process in the solar atmosphere that underlies magnetic energy release and particle acceleration. This process is responsible for the onset of solar flares, coronal mass ejections, and other explosive events (e.g., jets). Here, we report direct imaging of a prolonged plasma/current sheet along with quasiperiodic magnetic reconnection in the solar corona using ultra-high-resolution observations from the 1.6 m Goode Solar Telescope at the Big Bear Solar Observatory and the Solar Dynamics Observatory/Atmospheric Imaging Assembly. The current sheet appeared near a null point in the fan–spine topology and persisted over an extended period (≈20 hr). The length and apparent width of the current sheet were about 6″ and 2″, respectively, and the plasma temperature was ≈10–20 MK. We observed quasiperiodic plasma inflows and outflows (bidirectional jets with plasmoids) at the reconnection site/current sheet. Furthermore, quasiperiodic reconnection at the long-lasting current sheet produced recurrent eruptions (small flares and jets) and contributed significantly to the recurrent impulsive heating of the active region. Direct imaging of a plasma/current sheet and recurrent null-point reconnection for such an extended period has not been reported previously. These unprecedented observations provide compelling evidence that supports the universal model for solar eruptions (i.e., the breakout model) and have implications for impulsive heating of active regions by recurrent reconnection near null points. The prolonged and sustained reconnection for about 20 hr at the breakout current sheet provides new insights into the dynamics and energy release processes in the solar corona. 
    more » « less
  3. This paper outlines key scientific topics that are important for the development of solar system physics and how observations of heavy ion composition can address them. The key objectives include, 1) understanding the Sun’s chemical composition by identifying specific mechanisms driving elemental variation in the corona. 2) Disentangling the solar wind birthplace and drivers of release by determining the relative contributions of active regions (ARs), quiet Sun, and coronal hole plasma to the solar wind. 3) Determining the principal mechanisms driving solar wind evolution from the Sun by identifying the importance and interplay of reconnection, waves, and/or turbulence in driving the extended acceleration and heating of solar wind and transient plasma. The paper recommends complementary heavy ion measurements that can be traced from the Sun to the heliosphere to properly connect and study these regions to address these topics. The careful determination of heavy ion and elemental composition of several particle populations, matched at the Sun and in the heliosphere, will permit for a comprehensive examination of fractionation processes, wave-particle interactions, coronal heating, and solar wind release and energization that are key to understanding how the Sun forms and influences the heliosphere. 
    more » « less
  4. Abstract The abundance of helium (AHe) in the solar wind exhibits variations typically in the range from 2% to 5% with respect to solar cycle activity and solar wind velocity. However, there are instances where the observedAHeis exceptionally low (<1%). These low-AHeoccurrences are detected both near the Sun and at 1 au. The low-AHeevents are generally observed near the heliospheric current sheet. We analyzed 28 low-AHeevents observed by the Wind spacecraft and 4 by Parker Solar Probe to understand their origin. In this work, we make use of the ADAPT-WSA model to derive the sources of our events at the base of the solar corona. The modeling suggests that the low-AHeevents originated from the boundaries of coronal holes, primarily from large quiescent helmet streamers. We argue that the cusp above the core of the streamer can produce such very low helium abundance events. The streamer core serves as an ideal location for gravitational settling to occur as demonstrated by previous models, leading to the release of this plasma through reconnection near the cusp, resulting in low-AHeevents. Furthermore, observations from Ulysses provide direct evidence that these events originated from coronal streamers. 
    more » « less
  5. A growing body of evidence suggests that the solar wind is powered to a large extent by an Alfvén-wave (AW) energy flux. AWs energize the solar wind via two mechanisms: heating and work. We use high-resolution direct numerical simulations of reflection-driven AW turbulence (RDAWT) in a fast-solar-wind stream emanating from a coronal hole to investigate both mechanisms. In particular, we compute the fraction of the AW power at the coronal base ( $$P_\textrm {AWb}$$ ) that is transferred to solar-wind particles via heating between the coronal base and heliocentric distance $$r$$ , which we denote by $$\chi _{H}(r)$$ , and the fraction that is transferred via work, which we denote by $$\chi _{W}(r)$$ . We find that $$\chi _{W}(r_{A})$$ ranges from 0.15 to 0.3, where $$r_{A}$$ is the Alfvén critical point. This value is small compared with one because the Alfvén speed $$v_{A}$$ exceeds the outflow velocity $$U$$ at $$r < r_{A}$$ , so the AWs race through the plasma without doing much work. At $$r>r_{A}$$ , where $$v_{A} < U$$ , the AWs are in an approximate sense ‘stuck to the plasma’, which helps them do pressure work as the plasma expands. However, much of the AW power has dissipated by the time the AWs reach $$r=r_{A}$$ , so the total rate at which AWs do work on the plasma at $$r>r_{A}$$ is a modest fraction of $$P_\textrm {AWb}$$ . We find that heating is more effective than work at $$r < r_{A}$$ , with $$\chi _{H}(r_{A})$$ ranging from 0.5 to 0.7. The reason that $$\chi _{H} \geq 0.5$$ in our simulations is that an appreciable fraction of the local AW power dissipates within each Alfvén-speed scale height in RDAWT, and there are a few Alfvén-speed scale heights between the coronal base and $$r_{A}$$ . A given amount of heating produces more magnetic moment in regions of weaker magnetic field. Thus, paradoxically, the average proton magnetic moment increases robustly with increasing $$r$$ at $$r>r_{A}$$ , even though the total rate at which AW energy is transferred to particles at $$r>r_{A}$$ is a small fraction of $$P_\textrm {AWb}$$ . 
    more » « less