Abstract Chalcogenide perovskites have garnered interest for applications in semiconductor devices due to their excellent predicted optoelectronic properties and stability. However, high synthesis temperatures have historically made these materials incompatible with the creation of photovoltaic devices. Here, we demonstrate the solution processed synthesis of luminescent BaZrS3and BaHfS3chalcogenide perovskite films using single‐phase molecular precursors at sulfurization temperatures of 575 °C and sulfurization times as short as one hour. These molecular precursor inks were synthesized using known carbon disulfide insertion chemistry to create Group 4 metal dithiocarbamates, and this chemistry was extended to create species, such as barium dithiocarboxylates, that have never been reported before. These findings, with added future research, have the potential to yield fully solution processed thin films of chalcogenide perovskites for various optoelectronic applications.
more »
« less
Liquid Flux–Assisted Mechanism for Modest Temperature Synthesis of Large‐Grain BaZrS 3 and BaHfS 3 Chalcogenide Perovskites
Chalcogenide perovskites are promising semiconductor materials with attractive optoelectronic properties and appreciable stability, making them enticing candidates for photovoltaics and related electronic applications. Traditional synthesis methods for these materials have long suffered from high‐temperature requirements of 800–1000 °C. However, the recently developed solution processing route provides a way to circumvent this. By utilizing barium thiolate and ZrH2, this method is capable of synthesizing BaZrS3perovskite at modest temperatures (500–600 °C), generating crystalline domains on the order of hundreds of nanometers in size. Herein, a systematic study of this solution processing route is done to gain a mechanistic understanding of the process and to supplement the development of device quality fabrication methodologies. A barium polysulfide liquid flux is identified as playing a key role in the rapid synthesis of large‐grain BaZrS3perovskite at modest temperatures. Additionally, this mechanism is successfully extended to the related BaHfS3perovskite. The reported findings identify viable precursors, key temperature regimes, and reaction conditions that are likely to enable the large‐grain chalcogenide perovskite growth, essential toward the formation of device‐quality thin films.
more »
« less
- PAR ID:
- 10418666
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy and Sustainability Research
- Volume:
- 4
- Issue:
- 5
- ISSN:
- 2699-9412
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Chalcogenide perovskites have garnered increasing attention as stable, non‐toxic alternatives to lead halide perovskites. However, their conventional synthesis at high temperatures (>1000 °C) has hindered widespread adoption. Recent studies have developed low‐to‐moderate temperature synthesis methods (<600 °C) using reactive precursors, yet a comprehensive understanding of the pivotal factors affecting reproducibility and repeatability remains elusive. This study delineates the critical factors in the low‐temperature synthesis of BaMS3(M═Zr, Hf, Ti) compounds and presents a generalized framework. Innovative approaches are developed for synthesizing BaMS3compounds using this framework involving organometallics for solution deposition. The molecular precursor routes, employing metal acetylacetonates to generate soluble metal–sulfur bonded complexes and metal–organic compounds to produce soluble metal‐thiolate, metal‐isothiocyanate, and metal‐trithiocarbonate species, are demonstrated to yield carbon‐free BaMS3. These methods have achieved the most contiguous films of BaZrS3and BaHfS3using solution deposition to date. Furthermore, a hybrid solution processing method involving stacking sputter‐deposited Zr and solution‐deposited BaS layers is employed to synthesize a contiguous, oxygen‐free BaZrS3film. The diffuse reflectance measurements indicate a direct bandgap of ≈ 1.85 eV for the BaZrS3films and ≈ 2.1 eV for the BaHfS3film under investigation.more » « less
-
Abstract The making of BaZrS3thin films by molecular beam epitaxy (MBE) is demonstrated. BaZrS3forms in the orthorhombic distorted‐perovskite structure with corner‐sharing ZrS6octahedra. The single‐step MBE process results in films smooth on the atomic scale, with near‐perfect BaZrS3stoichiometry and an atomically sharp interface with the LaAlO3substrate. The films grow epitaxially via two competing growth modes: buffered epitaxy, with a self‐assembled interface layer that relieves the epitaxial strain, and direct epitaxy, with rotated‐cube‐on‐cube growth that accommodates the large lattice constant mismatch between the oxide and the sulfide perovskites. This work sets the stage for developing chalcogenide perovskites as a family of semiconductor alloys with properties that can be tuned with strain and composition in high‐quality epitaxial thin films, as has been long‐established for other systems including Si‐Ge, III‐Vs, and II‐VIs. The methods demonstrated here also represent a revival of gas‐source chalcogenide MBE.more » « less
-
Chalcogenide perovskites such as BaZrS 3 have promising optoelectronic properties. Methods to produce these materials at low temperatures, especially in the solution phase, are currently scarce. We describe a solution-phase synthesis of colloidal nanoparticles of BaZrS 3 using reactive metal amide precursors. The nanomaterials are crystallographically and spectroscopically characterized.more » « less
-
Abstract Despite the groundbreaking advancements in the synthesis of inorganic lead halide perovskite (LHP) nanocrystals (NCs), stimulated from their intriguing size‐, composition‐, and morphology‐dependent optical and optoelectronic properties, their formation mechanism through the hot‐injection (HI) synthetic route is not well‐understood. In this work, for the first time, in‐flow HI synthesis of cesium lead iodide (CsPbI3) NCs is introduced and a comprehensive understanding of the interdependent competing reaction parameters controlling the NC morphology (nanocube vs nanoplatelet) and properties is provided. Utilizing the developed flow synthesis strategy, a change in the CsPbI3NC formation mechanism at temperatures higher than 150 °C, resulting in different CsPbI3morphologies is revealed. Through comparison of the flow‐ versus flask‐based synthesis, deficiencies of batch reactors in reproducible and scalable synthesis of CsPbI3NCs with fast formation kinetics are demonstrated. The developed modular flow chemistry route provides a new frontier for high‐temperature studies of solution‐processed LHP NCs and enables their consistent and reliable continuous nanomanufacturing for next‐generation energy technologies.more » « less
An official website of the United States government
