skip to main content

Title: Nontarget Chemical Composition of Surface Waters May Reflect Ecosystem Processes More than Discrete Source Contributions
We investigated environmental, landscape, and microbial factors that could structure the spatiotemporal variability in the nontarget chemical composition of four riverine systems in the Oregon Coast Range, USA. We hypothesized that the nontarget chemical composition in river water would be structured by broad-scale landscape gradients in each watershed. Instead, only a weak relationship existed between the nontarget chemical composition and land cover gradients. Overall, the effects of microbial communities and environmental variables on chemical composition were nearly twice as large as those of the landscape, and much of the influence of environmental variables on the chemical composition was mediated through the microbial community (i.e., environment affects microbes, which affect chemicals). Therefore, we found little evidence to support our hypothesis that chemical spatiotemporal variability was related to broad-scale landscape gradients. Instead, we found qualitative and quantitative evidence to suggest that chemical spatiotemporal variability of these rivers is controlled by changes in microbial and seasonal hydrologic processes. While the contributions of discrete chemical sources are undeniable, water chemistry is undoubtedly impacted by broad-scale continuous sources. Our results suggest that diagnostic chemical signatures can be developed to monitor ecosystem processes, which are otherwise challenging or impossible to study with existing off-the-shelf sensors.  more » « less
Award ID(s):
1949013 1840243
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Environmental Science & Technology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Zucconi, Laura (Ed.)
    Ice-free soils in the McMurdo Dry Valleys select for taxa able to cope with challenging environmental conditions, including extreme chemical water activity gradients, freeze-thaw cycling, desiccation, and solar radiation regimes. The low biotic complexity of Dry Valley soils makes them well suited to investigate environmental and spatial influences on bacterial community structure. Water tracks are annually wetted habitats in the cold-arid soils of Antarctica that form briefly each summer with moisture sourced from snow melt, ground ice thaw, and atmospheric deposition via deliquescence and vapor flow into brines. Compared to neighboring arid soils, water tracks are highly saline and relatively moist habitats. They represent a considerable area (∼5–10 km2) of the Dry Valley terrestrial ecosystem, an area that is expected to increase with ongoing climate change. The goal of this study was to determine how variation in the environmental conditions of water tracks influences the composition and diversity of microbial communities. We found significant differences in microbial community composition between on- and off-water track samples, and across two distinct locations. Of the tested environmental variables, soil salinity was the best predictor of community composition, with members of the Bacteroidetes phylum being relatively more abundant at higher salinities and the Actinobacteria phylum showing the opposite pattern. There was also a significant, inverse relationship between salinity and bacterial diversity. Our results suggest water track formation significantly alters dry soil microbial communities, likely influencing subsequent ecosystem functioning. We highlight how Dry Valley water tracks could be a useful model system for understanding the potential habitability of transiently wetted environments found on the surface of Mars. 
    more » « less
  2. Seawater microorganisms play an important role in coral reef ecosystem functioning and can be influenced by biological, chemical, and physical features of reefs. As coral reefs continue to respond to environmental changes, the reef seawater microbiome has been proposed as a conservation tool for monitoring perturbations. However, the spatial variability of reef seawater microbial communities is not well studied, limiting our ability to make generalizable inferences across reefs. In order to better understand how microorganisms are distributed at multiple spatial scales, we examined seawater microbial communities in Florida Reef Tract and US Virgin Islands reef systems using a nested sampling design. On 3 reefs per reef system, we sampled seawater at regular spatial intervals close to the benthos. We assessed the microbial community composition of these waters using ribosomal RNA gene amplicon sequencing. Our analysis revealed that reef water microbial communities varied as a function of reef system and individual reefs, but communities did not differ within reefs and were not significantly influenced by benthic composition. For the reef system and inter-reef differences, abundant microbial taxa were found to be potentially useful indicators of environmental difference due to their high prevalence and variance. We further examined reef water microbial biogeography on a global scale using a secondary analysis of 5 studies, which revealed that microbial communities were more distinct with increasing geographic distance. These results suggest that biogeography is a distinguishing feature for reef water microbiomes, and that development of monitoring criteria may necessitate regionally specific sampling and analyses. 
    more » « less
  3. Abstract

    Tropical lakes harbour high levels of biodiversity, but the temporal and spatial variability of biological communities are still inadequately characterised, making it difficult to predict the impact of accelerated rates of environmental change in these regions. Our goal was to identify the spatiotemporal dynamics of the planktic diatom community in the Cajas Massif in the tropical Andes.

    We analysed seasonal diatom and environmental data over a period of 1 year from 10 lakes located in geologically distinct basins and modelled community–environment relationships using multivariate ordination and variation partitioning techniques. Generalised additive models with a full‐subset information theoretic approach also were used to determine which environmental variables explain single‐species abundance.

    Although the lakes are monomictic and thus have variable thermal structure across the year, seasonal variability of water chemistry conditions was negligible, and seasonal differences in diatom community composition were small. Across space, diatom community composition was correlated primarily with ionic content (divalent cations and alkalinity), related to bedrock composition, and secondly with lake thermal structure and productivity. The ionic gradient overrode the effect of the thermal structure–productivity gradient at the diatom community level, whereas individual diatom species responded more sensitively to variables related to in‐lake and catchment productivity, including chlorophyll‐aand iron, and the proportion of wetlands in the catchment.

    Our results indicate that the spatiotemporal variability of Cajas lakes and their diatom communities is the result of multiple intertwined environmental factors. The emergence of the ionic and thermal structure–productivity gradients in a rather small tropical lake district suggests segregation of ecological niches for diatoms that also may be important in other high‐elevation lake regions. Future studies that track tropical Andean lakes under natural and anthropogenically mediated change, both in contemporary times and in palaeoenvironmental reconstructions, would benefit from the modelling approach (community and species levels) developed here.

    more » « less
  4. Volatile organic compounds (VOCs) are constituents of marine ecosystems including coral reefs, where they are sources of atmospheric reactivity, indicators of ecosystem state, components of defense strategies, and infochemicals. Most VOCs result from sunlight-related processes; however, their light-driven dynamics are still poorly understood. We studied the spatial variability of a suite of VOCs, including dimethylsulfide (DMS), and the other dimethylsulfoniopropionate-derived compounds (DMSPCs), namely, DMSP, acrylate, and dimethylsulfoxide (DMSO), in waters around colonies of two scleractinian corals ( Acropora pulchra and Pocillopora  sp.) and the brown seaweed  Turbinaria ornata  in Mo’orean reefs, French Polynesia. Concentration gradients indicated that the corals were sources of DMSPCs, but less or null sources of VOCs other than DMS, while the seaweed was a source of DMSPCs, carbonyl sulfide (COS), and poly-halomethanes. A focused study was conducted around an A. pulchra  colony where VOC and DMSPC concentrations and free-living microorganism abundances were monitored every 6 h over 30 h. DMSPC concentrations near the polyps paralleled sunlight intensity, with large diurnal increases and nocturnal decrease. rDNA metabarcoding and metagenomics allowed the determination of microbial diversity and the relative abundance of target functional genes. Seawater near coral polyps was enriched in DMS as the only VOC, plus DMSP, acrylate, and DMSO, with a large increase during the day, coinciding with high abundances of symbiodiniacean sequences. Only 10 cm below, near the coral skeleton colonized by a turf alga, DMSPC concentrations were much lower and the microbial community was significantly different. Two meters down current from the coral, DMSPCs decreased further and the microbial community was more similar to that near the polyps than that near the turf alga. Several DMSP cycling genes were enriched in near-polyp with respect to down-current waters, namely, the eukaryotic DMS production and DMS oxidation encoding genes, attributed to the coral and the algal symbiont, and the prokaryotic DMS production gene dddD , harbored by coral-associated Gammaproteobacteria . Our results suggest that solar radiation-induced oxidative stress caused the release of DMSPCs by the coral holobiont, either directly or through symbiont expulsion. Strong chemical and biological gradients occurred in the water between the coral branches, which we attribute to layered hydrodynamics. 
    more » « less
  5. Introduction Soil microbial communities, including biological soil crust microbiomes, play key roles in water, carbon and nitrogen cycling, biological weathering, and other nutrient releasing processes of desert ecosystems. However, our knowledge of microbial distribution patterns and ecological drivers is still poor, especially so for the Chihuahuan Desert. Methods This project investigated the effects of trampling disturbance on surface soil microbiomes, explored community composition and structure, and related patterns to abiotic and biotic landscape characteristics within the Chihuahuan Desert biome. Composite soil samples were collected in disturbed and undisturbed areas of 15 long-term ecological research plots in the Jornada Basin, New Mexico. Microbial diversity of cross-domain microbial groups (total Bacteria, Cyanobacteria, Archaea, and Fungi) was obtained via DNA amplicon metabarcode sequencing. Sequence data were related to landscape characteristics including vegetation type, landforms, ecological site and state as well as soil properties including gravel content, soil texture, pH, and electrical conductivity. Results Filamentous Cyanobacteria dominated the photoautotrophic community while Proteobacteria and Actinobacteria dominated among the heterotrophic bacteria. Thaumarchaeota were the most abundant Archaea and drought adapted taxa in Dothideomycetes and Agaricomycetes were most abundant fungi in the soil surface microbiomes. Apart from richness within Archaea ( p  = 0.0124), disturbed samples did not differ from undisturbed samples with respect to alpha diversity and community composition ( p  ≥ 0.05), possibly due to a lack of frequent or impactful disturbance. Vegetation type and landform showed differences in richness of Bacteria, Archaea, and Cyanobacteria but not in Fungi. Richness lacked strong relationships with soil variables. Landscape features including parent material, vegetation type, landform type, and ecological sites and states, exhibited stronger influence on relative abundances and microbial community composition than on alpha diversity, especially for Cyanobacteria and Fungi. Soil texture, moisture, pH, electrical conductivity, lichen cover, and perennial plant biomass correlated strongly with microbial community gradients detected in NMDS ordinations. Discussion Our study provides first comprehensive insights into the relationships between landscape characteristics, associated soil properties, and cross-domain soil microbiomes in the Chihuahuan Desert. Our findings will inform land management and restoration efforts and aid in the understanding of processes such as desertification and state transitioning, which represent urgent ecological and economical challenges in drylands around the world. 
    more » « less