skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Representation and conservation of angular momentum in the Born–Oppenheimer theory of polyatomic molecules
This paper concerns the representation of angular momentum operators in the Born–Oppenheimer theory of polyatomic molecules and the various forms of the associated conservation laws. Topics addressed include the question of whether these conservation laws are exactly equivalent or only to some order of the Born–Oppenheimer parameter κ = ( m/ M) 1/4 and what the correlation is between angular momentum quantum numbers in the various representations. These questions are addressed in both problems involving a single potential energy surface and those with multiple, strongly coupled surfaces and in both the electrostatic model and those for which fine structure and electron spin are important. The analysis leads to an examination of the transformation laws under rotations of the electronic Hamiltonian; of the basis states, both adiabatic and diabatic, along with their phase conventions; of the potential energy matrix; and of the derivative couplings. These transformation laws are placed in the geometrical context of the structures in the nuclear configuration space that are induced by rotations, which include the rotational orbits or fibers, the surfaces upon which the orientation of the molecule changes but not its shape, and the section, an initial value surface that cuts transversally through the fibers. Finally, it is suggested that the usual Born–Oppenheimer approximation can be replaced by a dressing transformation, that is, a sequence of unitary transformations that block-diagonalize the Hamiltonian. When the dressing transformation is carried out, we find that the angular momentum operator does not change. This is a part of a system of exact equivalences among various representations of angular momentum operators in Born–Oppenheimer theory. Our analysis accommodates large-amplitude motions and is not dependent on small-amplitude expansions about an equilibrium position. Our analysis applies to noncollinear configurations of a polyatomic molecule; this covers all but a subset of measure zero (the collinear configurations) in the nuclear configuration space.  more » « less
Award ID(s):
2102402
PAR ID:
10418876
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
158
Issue:
10
ISSN:
0021-9606
Page Range / eLocation ID:
104302
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a phase-space electronic Hamiltonian ĤPS (parameterized by both nuclear position X and momentum P) that boosts each electron into the moving frame of the nuclei that are closest in real space. The final form for the phase space Hamiltonian does not assume the existence of an atomic orbital basis, and relative to standard Born–Oppenheimer theory, the newly proposed one-electron operators can be expressed directly as functions of electronic and nuclear positions and momentum. We show that (i) quantum–classical dynamics along such a Hamiltonian maintains momentum conservation and that (ii) diagonalizing such a Hamiltonian can recover the electronic momentum and electronic current density reasonably well. In conjunction with other reports in the literature that such a phase-space approach can also recover vibrational circular dichroism spectra, we submit that the present phase-space approach offers a testable and powerful approach to post-BO electronic structure theory. Moreover, the approach is inexpensive and can be immediately applied to simulations of chiral induced spin selectivity experiments (where the transfer of angular momentum between nuclei and electrons is considered critical). 
    more » « less
  2. Modern electronic structure theory is built around the Born–Oppenheimer approximation and the construction of an electronic Hamiltonian Ĥel(X) that depends on the nuclear position X (and not the nuclear momentum P). In this article, using the well-known theory of electron translation (Γ′) and rotational (Γ″) factors to couple electronic transitions to nuclear motion, we construct a practical phase-space electronic Hamiltonian that depends on both nuclear position and momentum, ĤPS(X,P). While classical Born–Oppenheimer dynamics that run along the eigensurfaces of the operator Ĥel(X) can recover many nuclear properties correctly, we present some evidence that motion along the eigensurfaces of ĤPS(X,P) can better capture both nuclear and electronic properties (including the elusive electronic momentum studied by Nafie). Moreover, only the latter (as opposed to the former) conserves the total linear and angular momentum in general. 
    more » « less
  3. null (Ed.)
    The exact energy and angular momentum conservation laws are derived by the Noether method for the Hamiltonian and symplectic representations of the gauge-free electromagnetic gyrokinetic Vlasov–Maxwell equations. These gyrokinetic equations, which are solely expressed in terms of electromagnetic fields, describe the low-frequency turbulent fluctuations that perturb a time-independent toroidally-axisymmetric magnetized plasma. The explicit proofs presented here provide a complete picture of the transfer of energy and angular momentum between the gyrocentres and the perturbed electromagnetic fields, in which the crucial roles played by gyrocentre polarization and magnetization effects are highlighted. In addition to yielding an exact angular momentum conservation law, the gyrokinetic Noether equation yields an exact momentum transport equation, which might be useful in more general equilibrium magnetic geometries. 
    more » « less
  4. We investigate the Polariton induced conical intersection (PICI) created from coupling a diatomic molecule with the quantized photon mode inside an optical cavity, and the corresponding Berry Phase effects. We use the rigorous Pauli–Fierz Hamiltonian to describe the quantum light-matter interactions between a LiF molecule and the cavity, and use the exact quantum propagation to investigate the polariton quantum dynamics. The molecular rotations relative to the cavity polarization direction play a role as the tuning mode of the PICI, resulting in an effective CI even within a diatomic molecule. To clearly demonstrate the dynamical effects of the Berry phase, we construct two additional models that have the same Born–Oppenheimer surface, but the effects of the geometric phase are removed. We find that when the initial wavefunction is placed in the lower polaritonic surface, the Berry phase causes a π phase-shift in the wavefunction after the encirclement around the CI, indicated from the nuclear probability distribution. On the other hand, when the initial wavefunction is placed in the upper polaritonic surface, the geometric phase significantly influences the couplings between polaritonic states and therefore, the population dynamics between them. These BP effects are further demonstrated through the photo-fragment angular distribution. PICI created from the quantized radiation field has the promise to open up new possibilities to modulate photochemical reactivities. 
    more » « less
  5. We show that standard Ehrenfest dynamics does not conserve linear and angular momentum when using a basis of truncated adiabatic states. However, we also show that previously proposed effective Ehrenfest equations of motion [M. Amano and K. Takatsuka, “Quantum fluctuation of electronic wave-packet dynamics coupled with classical nuclear motions,” J. Chem. Phys. 122, 084113 (2005) and V. Krishna, “Path integral formulation for quantum nonadiabatic dynamics and the mixed quantum classical limit,” J. Chem. Phys. 126, 134107 (2007)] involving the non-Abelian Berry force do maintain momentum conservation. As a numerical example, we investigate the Kramers doublet of the methoxy radical using generalized Hartree–Fock with spin–orbit coupling and confirm that angular momentum is conserved with the proper equations of motion. Our work makes clear some of the limitations of the Born–Oppenheimer approximation when using ab initio electronic structure theory to treat systems with unpaired electronic spin degrees of freedom, and we demonstrate that Ehrenfest dynamics can offer much improved, qualitatively correct results. 
    more » « less