Abstract Aldehyde‐assisted water electrolysis offers an attractive pathway for energy‐saving bipolar hydrogen production with combined faradaic efficiency (FE) of 200% while converting formaldehyde into value‐added formate. Herein we report the design and synthesis of noble metal‐free Cu6Sn5alloy as a highly effective electrocatalyst for formaldehyde electro‐oxidative dehydrogenation, demonstrating a geometric current density of 915 ± 46 mA cm−2at 0.4 V versus reversible hydrogen electrode, outperforming many noble metal electrocatalysts reported previously. The formaldehyde‐assisted water electrolyzer delivers 100 mA cm−2at a low cell voltage of 0.124 V, and a current density of 486 ± 20 mA cm−2at a cell voltage of 0.6 V without any iR compensation and exhibits nearly 200% faradaic efficiency for bipolar hydrogen production at 100 mA cm−2in 88 h long‐term operation. Density functional theory calculations further confirm the notably lowered barriers for dehydrogenation and Tafel steps on the Cu₆Sn₅ surface compared to Cu, underscoring its potential as a highly active catalyst. 
                        more » 
                        « less   
                    
                            
                            Bifunctional Ultrathin RhRu 0.5 ‐Alloy Nanowire Electrocatalysts for Hydrazine‐Assisted Water Splitting
                        
                    
    
            Abstract Hydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2103116
- PAR ID:
- 10418963
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Materials
- Volume:
- 35
- Issue:
- 23
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract A crucial step toward clean hydrogen (H2) energy production through water electrolysis is to develop high‐stability catalysts, which can be reliably used at high current densities for a long time. So far, platinum group metals (PGM) and their oxides, for example, Pt and iridium oxide (IrO2) have been well‐regarded as the criterion for hydrogen and oxygen evolution reactions (HER and OER) electrocatalysts. However, the PGM catalysts usually undergo severe performance decay during the long‐term operation. Herein, the in situ growth of iron phosphosulfate (Fe2P2S6) nanocrystals (NCs) catalysts on carbon paper synthesized by combing chemical vapor deposition with solvent‐thermal treatment is reported to show competitive performance and stability as compared to the state‐of‐the‐art PGM catalysts in a real water electrolyzer. A current density of 370 mA cm−2is achieved at 1.8 V when using Fe2P2S6NCs as bifunctional catalysts in an anion exchange membrane water electrolyzer. The Fe2P2S6NCs also show much better stability than the Pt‐IrO2catalysts at 300 mA cm−2for a continuous 24 h test. The surface generated FeOOH on Fe2P2S6is the real active site for OER. These results indicate that the Fe2P2S6NCs potentially can be used to replace PGM catalysts for practical water electrolyzers.more » « less
- 
            The viability of the electrolysis of water currently relies on expensive catalysts such as Pt that are far too impractical for industrial-scale use. Thus, there is considerable interest in developing low-cost, earth-abundant nanomaterials and their alloys as a potential alternative to existing standard catalysts. To address this issue, a synergistic approach involving theory and experiment was carried out. The former, based on density functional theory, was conducted to guide the experiment in selecting the ideal dopant and optimal concentration by focusing on 3d, 4d, and 5d elements as dopants on Ni (001) surface. Subsequently, a series of Ni1−xCrx(x= 0.01–0.09) alloy nanocrystals (NCs) with size ranging from 8.3 ± 1.6–18.2 ± 3.2 nm were colloidally synthesized to experimentally investigate the hydrogen evolution reaction (HER) activity. A compositional dependent trend for electrocatalytic activity was observed from both approaches with Ni0.92Cr0.08NCs showed the lowest ΔGHvalue and the lowest overpotential (η−10) at −10 mA cm−2current density (j), suggesting the highest HER activity among all compositions studied. Among alloy NCs, the highest performing Ni0.92Cr0.08composition displayed a mixed Volmer–Heyrovsky HER mechanism, the lowest Tafel slope, and improved stability in alkaline solutions. This study provides critical insights into enhancing the performance of earth-abundant metals through doping-induced electronic structure variation, paving the way for the design of high-efficiency catalysts for water electrolysis.more » « less
- 
            null (Ed.)Electrochemical water splitting is one of the most promising approaches for sustainable energy conversion and storage toward a future hydrogen society. This demands durable and affordable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). In this study, we report the preparation of uniform Ni–P–O, Ni–S–O, and Ni–S–P–O electrocatalytic films on nickel foam (NF) substrates via flow cell-assisted electrodeposition. Remarkably, electrodeposition onto 12 cm 2 substrates was optimized by strategically varying critical parameters. The high quality and reproducibility of the materials is attributed to the use of a 3D-printed flow cell with a tailored design. Then, the as-fabricated electrodes were tested for overall water splitting in the same flow cell under alkaline conditions. The best-performing sample, NiSP/NF, required relatively low overpotentials of 93 mV for the HER and 259 mV for the OER to produce a current density of 10 mA cm −2 . Importantly, the electrodeposited films underwent oxidation into amorphous nickel (oxy)hydroxides and oxidized S and P species, improving both HER and OER performance. The superior electrocatalytic performance of the Ni–S–P–O films originates from the unique reconstruction process during the HER/OER. Furthermore, the overall water splitting test using the NiSP/NF couple required a low cell voltage of only 1.85 V to deliver a current density of 100 mA cm −2 . Overall, we demonstrate that high-quality electrocatalysts can be obtained using a simple and reproducible electrodeposition method in a robust 3D-printed flow cell.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
