skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ag–Ru interface for highly efficient hydrazine assisted water electrolysis
Ru decorated Ag nanoparticles are designed as highly effective bifunctional electrocatalysts for hydrazine oxidation and hydrogen evolution reactions, enabling a hydrazine assisted water electrolyser with greatly increased current density.  more » « less
Award ID(s):
2103116
PAR ID:
10538096
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
RSC
Date Published:
Journal Name:
Energy & Environmental Science
Volume:
17
Issue:
6
ISSN:
1754-5692
Page Range / eLocation ID:
2279 to 2286
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hydrazine‐assisted water electrolysis offers a feasible path for low‐voltage green hydrogen production. Herein, the design and synthesis of ultrathin RhRu0.5‐alloy wavy nanowires as bifunctional electrocatalysts for both the anodic hydrazine oxidation reaction (HzOR) and the cathodic hydrogen evolution reaction (HER) is reported. It is shown that the RhRu0.5‐alloy wavy nanowires can achieve complete electrooxidation of hydrazine with a low overpotential and high mass activity, as well as improved performance for the HER. The resulting RhRu0.5bifunctional electrocatalysts enable, high performance hydrazine‐assisted water electrolysis delivering a current density of 100 mA cm−2at an ultralow cell voltage of 54 mV and a high current density of 853 mA cm−2at a cell voltage of 0.6 V. The RhRu0.5 electrocatalysts further demonstrate a stable operation at a high current density of 100 mA cm−2for 80 hours of testing period with little irreversible degradation. The overall performance greatly exceeds that of the previously reported hydrazine‐assisted water electrolyzers, offering a pathway for efficiently converting hazardous hydrazine into molecular hydrogen. 
    more » « less
  2. Cr(N2)2(diphosphine)2 complexes catalyze the reduction of dinitrogen at room temperature using SmI2 and ethylene glycol or H2O to form hydrazine and ammonia. 
    more » « less
  3. Abstract Three‐dimensional cell encapsulation has rendered itself a staple in the tissue engineering field. Using recombinantly engineered, biopolymer‐based hydrogels to encapsulate cells is especially promising due to the enhanced control and tunability it affords. Here, we describe in detail the synthesis of our hyaluronan (i.e., hyaluronic acid) and elastin‐like protein (HELP) hydrogel system. In addition to validating the efficacy of our synthetic process, we also demonstrate the modularity of the HELP system. Finally, we show that cells can be encapsulated within HELP gels over a range of stiffnesses, exhibit strong viability, and respond to stiffness cues. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Elastin‐like protein modification with hydrazine Basic Protocol 2: Nuclear magnetic resonance quantification of elastin‐like protein modification with hydrazine Basic Protocol 3: Hyaluronic acid–benzaldehyde synthesis Basic Protocol 4: Nuclear magnetic resonance quantification of hyaluronic acid–benzaldehyde Basic Protocol 5: 3D cell encapsulation in hyaluronan elastin‐like protein gels 
    more » « less
  4. Abstract We report a nickel complex for catalytic oxidation of ammonia to dinitrogen under ambient conditions. Using the aryloxyl radical 2,4,6‐tri‐tert‐butylphenoxyl (tBu3ArO⋅) as a H atom acceptor to cleave the N−H bond of a coordinated NH3ligand up to 56 equiv of N2per Ni center can be generated. Employing theN‐oxyl radical 2,2,6,6‐(tetramethylpiperidin‐1‐yl)oxyl (TEMPO⋅) as the H‐atom acceptor, up to 15 equiv of N2per Ni center are formed. A bridging Ni‐hydrazine product identified by isotopic nitrogen (15N) studies and supported by computational models indicates the N−N bond forming step occurs by bimetallic homocoupling of two paramagnetic [Ni]−NH2fragments. Ni‐mediated hydrazine disproportionation to N2and NH3completes the catalytic cycle. 
    more » « less
  5. Controlling the surface chemistry of colloidal semiconductor nanocrystals is critical to exploiting their rich electronic structures for various technologies. We recently demonstrated that the hydrothermal synthesis of colloidal nanocrystals of SrTiO 3 , a technologically-relevant electronic material, provided a strong negative correlation between the presence of an O 2 -related surface defect and hydrazine hydrate [W. L. Harrigan, S. E. Michaud, K. A. Lehuta, and K. R. Kittilstved, Chem. Mater. , 2016, 28 (2), 430]. When hydrazine hydrate is omitted during the aerobic hydrothermal synthesis, the surface defect is observed. However, it can be removed by either the addition of hydrazine hydrate or by purging the reaction solution with argon gas before the hydrothermal synthesis. We also propose that the formation of the O 2 -related defect is mediated by the reduction of dissolved O 2 by lactate anions that are present from the titanium precursor. This work helps elucidate the nature of the O 2 -related defect as a superoxide anion and presents a mechanism to explain its formation during the hydrothermal synthesis of SrTiO 3 and related BaTiO 3 nanocrystals. 
    more » « less