skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Effective Lifetime of Reversible Bonds in Transient Networks
Abstract The renormalized bond lifetime model (RBLM) is a popular scaling theory for the effective lifetime of reversible bonds in transient networks. It recognizes that stickers connected by a reversible bond undergo many (J) cycles of dissociation and reassociation. After finally separating, one of these stickers finds a new open partner in time τopenvia a subdiffusive process whose mean‐squared displacement is proportional totα, wheretis the time elapsed, and α is the subdiffusion exponent. The RBLM makes convenient mathematical approximations to obtain analytical expressions forJand τopen. The consequences of relaxing these approximations is investigated by performing fractional Brownian motion (FBM) simulations. It is found that the scaling relations developed in the RBLM hold surprisingly well. However, RBLM overestimates both τopenandJ, especially at lower values of α. For α = 0.5, corresponding to the Rouse limit, it is found that τopenis overestimated by a factor of approximately 4x, while the approximation forJis nearly exact. The degree of overestimation worsens as α decreases, and increases to 1–2 orders of magnitude at α = 0.25, corresponding to the reptation limit. This has important ramifications for experimental studies that use RBLM to interpret rheology and dielectric spectroscopy observations.  more » « less
Award ID(s):
2144007
PAR ID:
10419024
Author(s) / Creator(s):
 ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Theory and Simulations
Volume:
32
Issue:
4
ISSN:
1022-1344
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. π-stacking in ground-state dimers/trimers/tetramers ofN-butoxyphenyl(naphthalene)diimide (BNDI) exceeds 50 kcal ⋅ mol−1in strength, drastically surpassing that for the*3[pyrene]2excimer (∼30 kcal ⋅ mol−1; formal bond order = 1) and similar to other weak-to-moderate classical covalent bonds. Cooperative π-stacking in triclinic (BNDI-T) and monoclinic (BNDI-M) polymorphs effects unusually large linear thermal expansion coefficients (αa, αb, αc, β) of (452, −16.8, −154, 273) × 10−6⋅ K−1and (70.1, −44.7, 163, 177) × 10−6⋅ K−1, respectively. BNDI-T exhibits highly reversible thermochromism over a 300-K range, manifest by color changes from orange (ambient temperature) toward red (cryogenic temperatures) or yellow (375 K), with repeated thermal cycling sustained for over at least 2 y. 
    more » « less
  2. Abstract We present a novel methodology to search for intranuclear neutron-antineutron transition (n⟶n̅) followed byn̅-nucleon annihilation within an40Ar nucleus, using the MicroBooNE liquid argon time projection chamber (LArTPC) detector. A discovery of n⟶n̅transition or a new best limit on the lifetime of this process would either constitute physics beyond the Standard Model or greatly constrain theories of baryogenesis, respectively. The approach presented in this paper makes use of deep learning methods to select n⟶n̅events based on their unique features and differentiate them from cosmogenic backgrounds. The achieved signal and background efficiencies are (70.22 ± 6.04)% and (0.0020 ± 0.0003)%, respectively. A demonstration of a search is performed with a data set corresponding to an exposure of 3.32 ×1026neutron-years, and where the background rate is constrained through direct measurement, assuming the presence of a negligible signal. With this approach, no excess of events over the background prediction is observed, setting a demonstrative lower bound on the n⟶n̅lifetime in40Ar of τm≳ 1.1×1026years, and on the free n⟶n̅transition time of τn⟶n̅≳ 2.6×105s, each at the 90% confidence level. This analysis represents a first-ever proof-of-principle demonstration of the ability to search for this rare process in LArTPCs with high efficiency and low background. 
    more » « less
  3. Abstract The structure of liquid lithium pyroborate, Li4B2O5(J= Li/B = 2), has been measured over a wide temperature range by high‐energy X‐ray diffraction, and compared to that of its glass and borate liquids of other compositions. The results indicate a gradual increase in tetrahedral boron fraction from 3(1)% to 6(1)% during cooling fromT= 1271(15) to 721(8) K, consistent with the largerN4 = 10(1)% found for the glass, and literature11B nuclear magnetic resonance measurements. van't Hoff analysis based on a simple boron isomerization reaction BØ3O2⇌ BØO22–yields ΔH= 13(1) kJ mol–1and ΔS= 40(1) J mol–1 K–1for the boron coordination change from 4 to 3, which are, respectively, smaller and larger than found for singly charged isomers forJ ≤ 1. With these, we extend our model forN4(J,T), nonbridging oxygen fractionfnbr(J,T), configurational heat capacity , and entropySconf(J,T) contributions up toJ= 3. A maximum is revealed in atJ= 1, and shown semi‐quantitatively to lead to a corresponding maximum in fragility contribution, akin to that observed in the total fragilities by temperature‐modulated differential scanning calorimetry. Lithium is bound to 4.6(2) oxygen in the pyroborate liquid, with 2.7(1) bonds centered around 1.946(8) Å and 1.9(1) around 2.42(1) Å. In the glass,nLiO= 5.4(4), the increase being due to an increase in the number of short Li–O bonds. 
    more » « less
  4. Abstract Recently, slow molecular dynamics of poly(l‐lactic acid) (PLLA) by using 1D and 2D exchange NMR are investigated. In this work, slow molecular dynamics of PLLA chains in the α′, a stereocomplex (SC) with poly(d‐lactic acid), and glassy states are investigated in terms of centerband‐only detection of exchange (CODEX) NMR. The mixing‐time dependence of the CODEX data demonstrates that the molecular dynamics of stems become slower in the order of α′, α, and SC. The temperature dependence of the correlation time 〈τc〉 of the helical jump motions in the α and SC phases simply exhibits Arrhenius behaviors, with activation energy,Ea, values of 91 ± 1 and 97 ± 1 kJ mol−1, respectively. In contrast, the temperature dependence of 〈τc〉 in the α′ sample exhibits two Arrhenius lines with substantially differentEavalues of 273 ± 12 and 16 ± 14 kJ mol−1at temperatures below and above 84 °C. The obtained kinetics of molecular dynamics not only establish the relationship between packing structure and dynamics in PLLA polymorphs and in the SC, but also allow for an understanding of the coupled dynamics between the crystalline and amorphous regions at approximatelyTg
    more » « less
  5. Abstract The streaming instability (SI) is a leading candidate for planetesimal formation, which can concentrate solids through two-way aerodynamic interactions with the gas. The resulting concentrations can become sufficiently dense to collapse under particle self-gravity, forming planetesimals. Previous studies have carried out large parameter surveys to establish the critical particle to gas surface density ratio (Z), above which SI-induced concentration triggers planetesimal formation. The thresholdZdepends on the dimensionless stopping time (τs, a proxy for dust size). However, these studies neglected both particle self-gravity and external turbulence. Here, we perform 3D stratified shearing box simulations with both particle self-gravity and turbulent forcing, which we characterize via a turbulent diffusion parameter,αD. We find that forced turbulence, at amplitudes plausibly present in some protoplanetary disks, can increase the thresholdZby up to an order of magnitude. For example, forτs= 0.01, planetesimal formation occurs whenZ≳ 0.06, ≳0.1, and ≳0.2 atαD= 10−4, 10−3.5, and 10−3, respectively. We provide a single fit to the criticalZrequired for the SI to work as a function ofαDandτs(although limited to the rangeτs= 0.01–0.1). Our simulations also show that planetesimal formation requires a mid-plane particle-to-gas density ratio that exceeds unity, with the critical value being largely insensitive toαD. Finally, we provide an estimation of particle scale height that accounts for both particle feedback and external turbulence. 
    more » « less