skip to main content

Title: Quantification and machine learning based N 2 O–N and CO 2 –C emissions predictions from a decomposing rye cover crop

Cover crops improve soil health and reduce the risk of soil erosion. However, their impact on the carbon dioxide equivalence (CO2e) is unknown. Therefore, the objective of this 2‐yr study was to quantify the effect of cover crop‐induced differences in soil moisture, temperature, organic C, and microorganisms on CO2e, and to develop machine learning algorithms that predict daily N2O–N and CO2–C emissions. The prediction models tested were multiple linear regression, partial least square regression, support vector machine, random forest (RF), and artificial neural network. Models’ performance was accessed using R2, RMSE and mean of absolute value of error. Rye (Secale cerealeL.) was dormant seeded in mid‐October, and in the following spring it was terminated at corn's (Zea maysL.) V4 growth stage. Soil temperature, moisture, and N2O–N and CO2–C emissions were measured near continuously from soil thaw to harvest in 2019 and 2020. Prior to termination, the cover crop decreased N2O–N emissions by 34% (p = .05), and over the entire season, N2O–N emissions from cover crop and no cover crop treatments were similar (p = .71). Based on N2O–N and CO2–C emissions over the entire season and the estimated fixed cover crop‐C remaining in the soil, the partial CO2ewere −1,061 and 496 kg CO2eha–1in the cover crop and no cover crop treatments, respectively. The RF algorithm explained more of the daily N2O–N (73%) and CO2–C (85%) emissions variability during validation than the other models. Across models, the most important variables were temperature and the amount of cover crop‐C added to the soil.

more » « less
Award ID(s):
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Agronomy Journal
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems may leach legacy P from past cropland management. Experimental details The Biofuel Cropping System Experiment (BCSE) is located at the W.K. Kellogg Biological Station (KBS) (42.3956° N, 85.3749° W; elevation 288 m asl) in southwestern Michigan, USA. This site is a part of the Great Lakes Bioenergy Research Center ( and is a Long-term Ecological Research site ( Soils are mesic Typic Hapludalfs developed on glacial outwash54 with high sand content (76% in the upper 150 cm) intermixed with silt-rich loess in the upper 50 cm55. The water table lies approximately 12–14 m below the surface. The climate is humid temperate with a mean annual air temperature of 9.1 °C and annual precipitation of 1005 mm, 511 mm of which falls between May and September (1981–2010)56,57. The BCSE was established as a randomized complete block design in 2008 on preexisting farmland. Prior to BCSE establishment, the field was used for grain crop and alfalfa (Medicago sativa L.) production for several decades. Between 2003 and 2007, the field received a total of ~ 300 kg P ha−1 as manure, and the southern half, which contains one of four replicate plots, received an additional 206 kg P ha−1 as inorganic fertilizer. The experimental design consists of five randomized blocks each containing one replicate plot (28 by 40 m) of 10 cropping systems (treatments) (Supplementary Fig. S1; also see Sanford et al.58). Block 5 is not included in the present study. Details on experimental design and site history are provided in Robertson and Hamilton57 and Gelfand et al.59. Leaching of P is analyzed in six of the cropping systems: (i) continuous no-till corn, (ii) switchgrass, (iii) miscanthus, (iv) a mixture of five species of native grasses, (v) a restored native prairie containing 18 plant species (Supplementary Table S1), and (vi) hybrid poplar. Agronomic management Phenological cameras and field observations indicated that the perennial herbaceous crops emerged each year between mid-April and mid-May. Corn was planted each year in early May. Herbaceous crops were harvested at the end of each growing season with the timing depending on weather: between October and November for corn and between November and December for herbaceous perennial crops. Corn stover was harvested shortly after corn grain, leaving approximately 10 cm height of stubble above the ground. The poplar was harvested only once, as the culmination of a 6-year rotation, in the winter of 2013–2014. Leaf emergence and senescence based on daily phenological images indicated the beginning and end of the poplar growing season, respectively, in each year. Application of inorganic fertilizers to the different crops followed a management approach typical for the region (Table 1). Corn was fertilized with 13 kg P ha−1 year−1 as starter fertilizer (N-P-K of 19-17-0) at the time of planting and an additional 33 kg P ha−1 year−1 was added as superphosphate in spring 2015. Corn also received N fertilizer around the time of planting and in mid-June at typical rates for the region (Table 1). No P fertilizer was applied to the perennial grassland or poplar systems (Table 1). All perennial grasses (except restored prairie) were provided 56 kg N ha−1 year−1 of N fertilizer in early summer between 2010 and 2016; an additional 77 kg N ha−1 was applied to miscanthus in 2009. Poplar was fertilized once with 157 kg N ha−1 in 2010 after the canopy had closed. Sampling of subsurface soil water and soil for P determination Subsurface soil water samples were collected beneath the root zone (1.2 m depth) using samplers installed at approximately 20 cm into the unconsolidated sand of 2Bt2 and 2E/Bt horizons (soils at the site are described in Crum and Collins54). Soil water was collected from two kinds of samplers: Prenart samplers constructed of Teflon and silica ( in replicate blocks 1 and 2 and Eijkelkamp ceramic samplers ( in blocks 3 and 4 (Supplementary Fig. S1). The samplers were installed in 2008 at an angle using a hydraulic corer, with the sampling tubes buried underground within the plots and the sampler located about 9 m from the plot edge. There were no consistent differences in TDP concentrations between the two sampler types. Beginning in the 2009 growing season, subsurface soil water was sampled at weekly to biweekly intervals during non-frozen periods (April–November) by applying 50 kPa of vacuum to each sampler for 24 h, during which the extracted water was collected in glass bottles. Samples were filtered using different filter types (all 0.45 µm pore size) depending on the volume of leachate collected: 33-mm dia. cellulose acetate membrane filters when volumes were less than 50 mL; and 47-mm dia. Supor 450 polyethersulfone membrane filters for larger volumes. Total dissolved phosphorus (TDP) in water samples was analyzed by persulfate digestion of filtered samples to convert all phosphorus forms to soluble reactive phosphorus, followed by colorimetric analysis by long-pathlength spectrophotometry (UV-1800 Shimadzu, Japan) using the molybdate blue method60, for which the method detection limit was ~ 0.005 mg P L−1. Between 2009 and 2016, soil samples (0–25 cm depth) were collected each autumn from all plots for determination of soil test P (STP) by the Bray-1 method61, using as an extractant a dilute hydrochloric acid and ammonium fluoride solution, as is recommended for neutral to slightly acidic soils. The measured STP concentration in mg P kg−1 was converted to kg P ha−1 based on soil sampling depth and soil bulk density (mean, 1.5 g cm−3). Sampling of water samples from lakes, streams and wells for P determination In addition to chemistry of soil and subsurface soil water in the BCSE, waters from lakes, streams, and residential water supply wells were also sampled during 2009–2016 for TDP analysis using Supor 450 membrane filters and the same analytical method as for soil water. These water bodies are within 15 km of the study site, within a landscape mosaic of row crops, grasslands, deciduous forest, and wetlands, with some residential development (Supplementary Fig. S2, Supplementary Table S2). Details of land use and cover change in the vicinity of KBS are given in Hamilton et al.48, and patterns in nutrient concentrations in local surface waters are further discussed in Hamilton62. Leaching estimates, modeled drainage, and data analysis Leaching was estimated at daily time steps and summarized as total leaching on a crop-year basis, defined from the date of planting or leaf emergence in a given year to the day prior to planting or emergence in the following year. TDP concentrations (mg L−1) of subsurface soil water were linearly interpolated between sampling dates during non-freezing periods (April–November) and over non-sampling periods (December–March) based on the preceding November and subsequent April samples. Daily rates of TDP leaching (kg ha−1) were calculated by multiplying concentration (mg L−1) by drainage rates (m3 ha−1 day−1) modeled by the Systems Approach for Land Use Sustainability (SALUS) model, a crop growth model that is well calibrated for KBS soil and environmental conditions. SALUS simulates yield and environmental outcomes in response to weather, soil, management (planting dates, plant population, irrigation, N fertilizer application, and tillage), and genetics63. The SALUS water balance sub-model simulates surface runoff, saturated and unsaturated water flow, drainage, root water uptake, and evapotranspiration during growing and non-growing seasons63. The SALUS model has been used in studies of evapotranspiration48,51,64 and nutrient leaching20,65,66,67 from KBS soils, and its predictions of growing-season evapotranspiration are consistent with independent measurements based on growing-season soil water drawdown53 and evapotranspiration measured by eddy covariance68. Phosphorus leaching was assumed insignificant on days when SALUS predicted no drainage. Volume-weighted mean TDP concentrations in leachate for each crop-year and for the entire 7-year study period were calculated as the total dissolved P leaching flux (kg ha−1) divided by the total drainage (m3 ha−1). One-way ANOVA with time (crop-year) as the fixed factor was conducted to compare total annual drainage rates, P leaching rates, volume-weighted mean TDP concentrations, and maximum aboveground biomass among the cropping systems over all seven crop-years as well as with TDP concentrations from local lakes, streams, and groundwater wells. When a significant (α = 0.05) difference was detected among the groups, we used the Tukey honest significant difference (HSD) post-hoc test to make pairwise comparisons among the groups. In the case of maximum aboveground biomass, we used the Tukey–Kramer method to make pairwise comparisons among the groups because the absence of poplar data after the 2013 harvest resulted in unequal sample sizes. We also used the Tukey–Kramer method to compare the frequency distributions of TDP concentrations in all of the soil leachate samples with concentrations in lakes, streams, and groundwater wells, since each sample category had very different numbers of measurements. Individual spreadsheets in “data table_leaching_dissolved organic carbon and nitrogen.xls” 1.    annual precip_drainage 2.    biomass_corn, perennial grasses 3.    biomass_poplar 4.    annual N leaching _vol-wtd conc 5.    Summary_N leached 6.    annual DOC leachin_vol-wtd conc 7.    growing season length 8.    correlation_nh4 VS no3 9.    correlations_don VS no3_doc VS don Each spreadsheet is described below along with an explanation of variates. Note that ‘nan’ indicate data are missing or not available. First row indicates header; second row indicates units 1. Spreadsheet: annual precip_drainage Description: Precipitation measured from nearby Kellogg Biological Station (KBS) Long Term Ecological Research (LTER) Weather station, over 2009-2016 study period. Data shown in Figure 1; original data source for precipitation ( Drainage estimated from SALUS crop model. Note that drainage is percolation out of the root zone (0-125 cm). Annual precipitation and drainage values shown here are calculated for growing and non-growing crop periods. Variate    Description year    year of the observation crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” precip_G    precipitation during growing period (milliMeter) precip_NG    precipitation during non-growing period (milliMeter) drainage_G    drainage during growing period (milliMeter) drainage_NG    drainage during non-growing period (milliMeter)      2. Spreadsheet: biomass_corn, perennial grasses Description: Maximum aboveground biomass measurements from corn, switchgrass, miscanthus, native grass and restored prairie plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2.   Variate    Description year    year of the observation date    day of the observation (mm/dd/yyyy) crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” replicate    each crop has four replicated plots, R1, R2, R3 and R4 station    stations (S1, S2 and S3) of samplings within the plot. For more details, refer to link ( species    plant species that are rooted within the quadrat during the time of maximum biomass harvest. See protocol for more information, refer to link ( For maize biomass, grain and whole biomass reported in the paper (weed biomass or surface litter are excluded). Surface litter biomass not included in any crops; weed biomass not included in switchgrass and miscanthus, but included in grass mixture and prairie. fraction    Fraction of biomass biomass_plot    biomass per plot on dry-weight basis (Grams_Per_SquareMeter) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying column biomass per plot with 0.01 3. Spreadsheet: biomass_poplar Description: Maximum aboveground biomass measurements from poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Data shown in Figure 2. Note that poplar biomass was estimated from crop growth curves until the poplar was harvested in the winter of 2013-14. Variate    Description year    year of the observation method    methods of poplar biomass sampling date    day of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 diameter_at_ground    poplar diameter (milliMeter) at the ground diameter_at_15cm    poplar diameter (milliMeter) at 15 cm height biomass_tree    biomass per plot (Grams_Per_Tree) biomass_ha    biomass (megaGrams_Per_Hectare) by multiplying biomass per tree with 0.01 4. Spreadsheet: annual N leaching_vol-wtd conc Description: Annual leaching rate (kiloGrams_N_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_N_Per_Liter) of nitrate (no3) and dissolved organic nitrogen (don) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen leached and volume-wtd mean N concentration shown in Figure 3a and Figure 3b, respectively. Note that ammonium (nh4) concentration were much lower and often undetectable (<0.07 milliGrams_N_Per_Liter). Also note that in 2009 and 2010 crop-years, data from some replicates are missing.    Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) vol-wtd no3 conc.    Volume-weighted mean no3 concentration (milliGrams_N_Per_Liter) vol-wtd don conc.    Volume-weighted mean don concentration (milliGrams_N_Per_Liter) 5. Spreadsheet: summary_N leached Description: Summary of total amount and forms of N leached (kiloGrams_N_Per_Hectare) and the percent of applied N lost to leaching over the seven years for corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for nitrogen amount leached shown in Figure 4a and percent of applied N lost shown in Figure 4b. Note the fraction of unleached N includes in harvest, accumulation in root biomass, soil organic matter or gaseous N emissions were not measured in the study. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” no3 leached    annual leaching rates of nitrate (kiloGrams_N_Per_Hectare) don leached    annual leaching rates of don (kiloGrams_N_Per_Hectare) N unleached    N unleached (kiloGrams_N_Per_Hectare) in other sources are not studied % of N applied N lost to leaching    % of N applied N lost to leaching 6. Spreadsheet: annual DOC leachin_vol-wtd conc Description: Annual leaching rate (kiloGrams_Per_Hectare) and volume-weighted mean N concentrations (milliGrams_Per_Liter) of dissolved organic carbon (DOC) in the leachate samples collected from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2016. Data for DOC leached and volume-wtd mean DOC concentration shown in Figure 5a and Figure 5b, respectively. Note that in 2009 and 2010 crop-years, water samples were not available for DOC measurements.     Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” crop-year    year of the observation replicate    each crop has four replicated plots, R1, R2, R3 and R4 doc leached    annual leaching rates of nitrate (kiloGrams_Per_Hectare) vol-wtd doc conc.    volume-weighted mean doc concentration (milliGrams_Per_Liter) 7. Spreadsheet: growing season length Description: Growing season length (days) of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in the Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2009-2015. Date shown in Figure S2. Note that growing season is from the date of planting or emergence to the date of harvest (or leaf senescence in case of poplar).   Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation growing season length    growing season length (days) 8. Spreadsheet: correlation_nh4 VS no3 Description: Correlation of ammonium (nh4+) and nitrate (no3-) concentrations (milliGrams_N_Per_Liter) in the leachate samples from corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data shown in Figure S3. Note that nh4+ concentration in the leachates was very low compared to no3- and don concentration and often undetectable in three crop-years (2013-2015) when measurements are available. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” date    date of the observation (mm/dd/yyyy) replicate    each crop has four replicated plots, R1, R2, R3 and R4 nh4 conc    nh4 concentration (milliGrams_N_Per_Liter) no3 conc    no3 concentration (milliGrams_N_Per_Liter)   9. Spreadsheet: correlations_don VS no3_doc VS don Description: Correlations of don and nitrate concentrations (milliGrams_N_Per_Liter); and doc (milliGrams_Per_Liter) and don concentrations (milliGrams_N_Per_Liter) in the leachate samples of corn, switchgrass, miscanthus, native grass, restored prairie and poplar plots in Great Lakes Bioenergy Research Center (GLBRC) Biomass Cropping System Experiment (BCSE) during 2013-2015. Data of correlation of don and nitrate concentrations shown in Figure S4 a and doc and don concentrations shown in Figure S4 b. Variate    Description crop    “corn” “switchgrass” “miscanthus” “nativegrass” “restored prairie” “poplar” year    year of the observation don    don concentration (milliGrams_N_Per_Liter) no3     no3 concentration (milliGrams_N_Per_Liter) doc    doc concentration (milliGrams_Per_Liter) 
    more » « less
  2. Abstract

    Rice paddies are one of the major sources of anthropogenic methane (CH4) emissions. The alternate wetting and drying (AWD) irrigation management has been shown to reduce CH4emissions and total global warming potential (GWP) (CH4and nitrous oxide [N2O]). However, there is limited information about utilizing AWD management to reduce greenhouse gas (GHG) emissions from commercial‐scale continuous rice fields. This study was conducted for five consecutive growing seasons (2015–2019) on a pair of adjacent fields in a commercial farm in Arkansas under long‐term continuous rice rotation irrigated with either continuously flooded (CF) or AWD conditions. The cumulative CH4emissions in the growing season across the two fields and 5 years ranged from 41 to 123 kg CH4‐C ha−1for CF and 1 to 73 kg CH4‐C ha−1for AWD. On average, AWD reduced CH4emissions by 73% relative to CH4emissions in CF fields. Compared to N2O emissions, CH4emissions dominated the GWP with an average contribution of 91% in both irrigation treatments. There was no significant variation in grain yield (7.3–11.9 Mg ha−1) or growing season N2O emissions (−0.02 to 0.51 kg N2O‐N ha−1) between the irrigation treatments. The yield‐scaled GWP was 368 and 173 kg CO2eq. Mg−1season−1for CF and AWD, respectively, showing the feasibility of AWD on a commercial farm to reduce the total GHG emissions while sustaining grain yield. Seasonal variations of GHG emissions observed within fields showed total GHG emissions were predominantly influenced by weather (precipitation) and crop and irrigation management. The influence of air temperature and floodwater heights on GHG emissions had high degree of variability among years and fields. These findings demonstrate that the use of multiyear GHG emission datasets could better capture variability of GHG emissions associated with rice production and could improve field verification of GHG emission models and scaling factors for commercial rice farms.

    more » « less
  3. Abstract. Nitrogen (N) fertilizer inputs to agricultural soils area leading cause of nitrous oxide (N2O) emissions. Legume cover cropsare an alternative N source that can reduce agricultural N2O emissionscompared to fertilizer N. However, our understanding of episodic N2Oflux following cover crop incorporation by tillage is limited and hasfocused on single-species cover crops. Our study explores whether increasingcover crop functional diversity with a legume–grass mixture can reduce pulseemissions of N2O following tillage. In a field experiment, we plantedcrimson clover (Trifolium incarnatum L.), cereal rye (Secale cereal L.), a clover–rye mixture, and a no-covercontrol at two field sites with contrasting soil fertility properties inMichigan. We hypothesized that N2O flux following tillage of the covercrops would be lower in the mixture and rye compared to the clovertreatment because rye litter can decrease N mineralization rates. Wemeasured N2O for approximately 2 weeks following tillage to capturethe first peak in N2O emissions in each site. Across cover croptreatments, the higher-fertility site, CF, had greater cover crop biomass,2-fold-higher aboveground biomass N, and higher cumulative N2Oemissions than the lower-fertility site, KBS (413.4±67.5 vs. 230.8±42.5 g N2O-N ha−1; P=0.004). Therewas a significant treatment effect on daily emissions at both sites. AtCF, N2O fluxes were higher following clover than the control 6 d aftertillage. At KBS, fluxes from the mixture were higher than rye 8 and 11 dafter tillage. When controlling for soil fertility differences betweensites, clover and mixture led to approximately 2-fold-higher N2Oemissions compared to rye and fallow treatments. We found partial supportfor our hypothesis that N2O would be lower following incorporation ofthe mixture than clover. However, treatment patterns differed by site,suggesting that interactions between cover crop functional types andbackground soil fertility influence N2O emissions during cover cropdecomposition. 
    more » « less
  4. Abstract

    Limited information on greenhouse gas emissions from tropical dry forest soils still hinders the assessment of the sources/sinks from this ecosystem and their contribution at global scales. Particularly, rewetting events after the dry season can have a significant effect on soil biogeochemical processes and associated exchange of greenhouse gases. This study evaluated the temporal variation and annual fluxes of CO2, N2O, and CH4from soils in a tropical dry forest successional gradient. After a prolonged drought of 5 months, large emissions pulses of CO2and N2O were observed at all sites following first rain events, caused by the “Birch effect,” with a significant effect on the net ecosystem exchange and the annual emissions budget. Annual CO2emissions were greatest for the young forest (8,556 kg C ha−1yr−1) followed by the older forest (7,420 kg C ha−1yr−1) and the abandoned pasture (7,224 kg C ha−1yr−1). Annual emissions of N2O were greatest for the forest sites (0.39 and 0.43 kg N ha−1yr−1) and least in the abandoned pasture (0.09 kg N ha−1yr−1). CH4uptake was greatest in the older forest (−2.61 kg C ha−1yr−1) followed by the abandoned pasture (−0.69 kg C ha−1yr−1) and the young forest (−0.58 kg C ha−1yr−1). Fluxes were mainly influenced by soil moisture, microbial biomass, and soil nitrate and ammonium concentrations. Annual CO2and N2O soil fluxes of tropical dry forests in this study and others from the literature were much lower than the annual fluxes in wetter tropical forests. Conversely, tropical dry forests and abandoned pastures are on average stronger sinks for CH4than wetter tropical forests.

    more » « less
  5. Abstract

    Seagrass meadows are valued for their ecosystem services, including their role in mitigating anthropogenic CO2emissions through ‘blue carbon’ sequestration and storage. This study quantifies the dynamics of whole ecosystem metabolism on daily to interannual timescales for an eelgrass (Zostera marina) meadow using in situ benthic O2flux measurements by aquatic eddy covariance over a period of 11 yr. The measurements were part of the Virginia Coast Reserve Long‐Term Ecological Research study, and covered a relatively stable period of seagrass ecosystem metabolism 6–13 yr after restoration by seeding (2007–2014), a die‐off event likely related to persistently high temperatures during peak growing season in 2015, and a partial recovery from 2016 to 2018. This unique sequence provides an unprecedented opportunity to study seagrass resilience to temperature stress. With this extensive data set covering 115 full diel cycles, we constructed an average annual oxygen budget that indicated the meadow was in metabolic balance when averaged over the entire period, with gross primary production and respiration equal to 95 and −94 mmol O2m−2d−1, respectively. On an interannual scale, there was a shift in trophic status from balanced to net heterotrophy during the die‐off event in 2015, then to net autotrophy as the meadow recovered. The highly dynamic and variable nature of seagrass metabolism captured by our aquatic eddy covariance data emphasizes the importance of using frequent measurements throughout the year to correctly estimate trophic status of seagrass meadows.

    more » « less