Interstitial fluid (ISF) that surrounds cells in tissues of the body is a novel source of biomarker that complements conventional sources like blood, urine, and saliva. To overcome difficulties in harvesting ISF, a minimally invasive, rapid, simple‐to‐use, cost‐effective method is developed to collect ISF from the skin involving a microneedle (MN) patch. By pressing 650 µm long MNs at an angle just below the skin surface, blood‐free ISF flows through micropores to the skin surface and is absorbed into a thin strip of paper on the MN patch backing for subsequent analysis. An optimized method in rat skin in vivo is well tolerated and able to collect >2 µL of ISF within 1 min. Brief skin pretreatment with MNs followed by a 5 min delay dramatically increases subsequent ISF collection by a mechanism believed to involve increased skin hydration. ISF collection using an MN patch has the potential to simplify access to biomarkers in ISF for research and future medical diagnostic and monitoring applications.
Currently available point‐of‐care systems for body fluid collection exhibit poor integration with sensors. Herein, the design of a disposable device for interstitial fluid (ISF) extraction as well as glucose, lactate, and potassium ion (K+) monitoring is reported on. It is minimally invasive and appropriate for single use, minimizing the risk of infection to the user. This microscale device contains a 3D‐printed cap‐like structure with a four‐by‐four microneedle (MN) array, bioreceptor‐modified carbon fiber (CF)‐sensing surface, and negative pressure convection technology. These features are incorporated within a compact, self‐contained, and manually operated microscale device, which is capable of withdrawing ≈3.0 μL of ISF from the skin. MN arrays applied with an upward driving force may increase the ISF flow rate. Moreover, functionalized CF working electrodes (WE1, WE2, WE3) are shown to selectively detect lactate, glucose, and K+with high sensitivities of 0.258, 0.549, and 0.657 μA μ
- Award ID(s):
- 2029974
- NSF-PAR ID:
- 10419112
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Small Science
- Volume:
- 3
- Issue:
- 6
- ISSN:
- 2688-4046
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract With ΣSFR∼ 4200
M ⊙yr−1kpc−2, SPT 0346–52 (z = 5.7) is the most intensely star-forming galaxy discovered by the South Pole Telescope. In this paper, we expand on previous spatially resolved studies, using ALMA observations of dust continuum, [Nii ] 205μ m, [Cii ] 158μ m, [Oi ] 146μ m, and undetected [Nii ] 122μ m and [Oi ] 63μ m emission to study the multiphase interstellar medium (ISM) in SPT 0346–52. We use pixelated, visibility-based lens modeling to reconstruct the source-plane emission. We also model the source-plane emission using the photoionization codecloudy and find a supersolar metallicity system. We calculateT dust= 48.3 K andλ peak= 80μ m and see line deficits in all five lines. The ionized gas is less dense than comparable galaxies, withn e < 32 cm−3, while ∼20% of the [Cii ] 158μ m emission originates from the ionized phase of the ISM. We also calculate the masses of several phases of the ISM. We find that molecular gas dominates the mass of the ISM in SPT 0346–52, with the molecular gas mass ∼4× higher than the neutral atomic gas mass and ∼100× higher than the ionized gas mass. -
ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z = 7.13
Abstract We present spatially resolved morphological properties of [C
II ] 158μ m, [OIII ] 88μ m, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz = 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII ] line and UV continuum are compact, the [CII ] line is extended up to a radius ofr ∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μ m, we find an average dust temperature and emissivity index of K and , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1M ⊙yr−1with an obscured fraction of 87%. While the [OIII ] line is a good tracer of the SFR, the [CII ] line shows deviation from the localL [CII ]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII ] and [OIII ], with significant residuals (∼5σ ) in the [OIII ] line spectrum after subtracting a single Gaussian model. This suggests a possible origin of the extended [CII ] structure from the cooling of hot ionized outflows. The extended [CII ] and high-velocity [OIII ] emission may both contribute in part to the highL [OIII ]/L [CII ]ratios recently reported inz > 6 galaxies. -
The simple synthesis of a Ni–TiO2nanocomposite supported on Vulcan carbon (XC–72 R) for the electrooxidation reaction of glucose is reported. Four transition metal weight ratios were synthesized and characterized. Cyclic voltammetry studies in 0.1 M NaOH demonstrate that the four metal catalysts can effectively oxidize 1 mM glucose, with the 3:1 (60%) Ni to Ti nanocomposite yielding the highest current. The 60% Ni–TiO2/XC72R catalyst was used to construct an enzyme–less, chronoamperometric sensor for glucose detection in an alkaline medium. Using 50
μ M aliquots of glucose at a potential of +0.7 V (vs Hg/HgO), the sensor responded rapidly (<3 s), provided a sensitivity of 3300μ A mM−1cm−2, detection limits of 144 nM (Signal/Noise = 3), and excellent selectivity and reproducibility. The glucose aliquot concentrations were then increased to 1 mM to mimic physiological blood conditions of 1–20 mM. At a potential of +0.7 V (vs Hg/HgO), the sensor continued to respond rapidly (<1 s), showed a sensitivity of 273.7μ A mM−1cm−2, detection limits of 3.13μ M (S/N = 3), and excellent selectivity and reproducibility. The catalyst also exhibited an ideal anti–poisoning capability to free chloride ions and negligible signals towards other interfering species. -
Abstract We present a search for extremely red, dust-obscured,
z > 7 galaxies with JWST/NIRCam+MIRI imaging over the first 20 arcmin2of publicly available Cycle 1 data from the COSMOS-Web, CEERS, and PRIMER surveys. Based on their red color in F277W−F444W (∼2.5 mag) and detection in MIRI/F770W (∼25 mag), we identify two galaxies, COS-z8M1 and CEERS-z7M1, that have best-fit photometric redshifts of and , respectively. We perform spectral energy distribution fitting with a variety of codes (includingbagpipes ,prospector ,beagle , andcigale ) and find a >95% probability that these indeed lie atz > 7. Both sources are compact (R eff≲ 200 pc) and highly obscured (A V ∼ 1.5–2.5) and, at our best-fit redshift estimates, likely have strong [Oiii ]+Hβ emission contributing to their 4.4μ m photometry. We estimate stellar masses of ∼1010M ⊙for both sources; by virtue of detection in MIRI at 7.7μ m, these measurements are robust to the inclusion of bright emission lines, for example, from an active galactic nucleus. We identify a marginal (2.9σ ) Atacama Large Millimeter/submillimeter Array detection at 2 mm within 0.″5 of COS-z8M1, which, if real, would suggest a remarkably high IR luminosity of ∼1012L ⊙. These two galaxies, if confirmed atz ∼ 8, would be extreme in their stellar and dust masses and may be representative of a substantial population of highly dust-obscured galaxies at cosmic dawn.