We present spatially resolved morphological properties of [C
With ΣSFR∼ 4200
- Publication Date:
- NSF-PAR ID:
- 10365012
- Journal Name:
- The Astrophysical Journal
- Volume:
- 928
- Issue:
- 2
- Page Range or eLocation-ID:
- Article No. 179
- ISSN:
- 0004-637X
- Publisher:
- DOI PREFIX: 10.3847
- Sponsoring Org:
- National Science Foundation
More Like this
-
ALMA Reveals Extended Cool Gas and Hot Ionized Outflows in a Typical Star-forming Galaxy at Z = 7.13
Abstract II ] 158μ m, [OIII ] 88μ m, dust, and rest-frame ultraviolet (UV) continuum emission for A1689-zD1, a strongly lensed, sub-L* galaxy atz = 7.13, by utilizing deep Atacama Large Millimeter/submillimeter Array (ALMA) and Hubble Space Telescope (HST) observations. While the [OIII ] line and UV continuum are compact, the [CII ] line is extended up to a radius ofr ∼ 12 kpc. Using multi-band rest-frame far-infrared continuum data ranging from 52 to 400μ m, we find an average dust temperature and emissivity index of K and , respectively, across the galaxy. We find slight differences in the dust continuum profiles at different wavelengths, which may indicate that the dust temperature decreases with distance. We map the star formation rate (SFR) via IR and UV luminosities and determine a total SFR of 37 ± 1M ⊙yr−1with an obscured fraction of 87%. While the [OIII ] line is a good tracer of the SFR, the [CII ] line shows deviation from the localL [CII ]-SFR relations in the outskirts of the galaxy. Finally, we observe a clear difference in the line profile between [CII ] and [OIII ], with significant residuals (∼5σ ) in the [OIII ] line spectrum after subtracting a single Gaussian model. This suggestsmore » -
Abstract We study the ionization and excitation structure of the interstellar medium in the late-stage gas-rich galaxy merger NGC 6240 using a suite of emission-line maps at ∼25 pc resolution from the Hubble Space Telescope, Keck/NIRC2 with Adaptive Optics, and the Atacama Large Millimeter/submillimeter Array (ALMA). NGC 6240 hosts a superwind driven by intense star formation and/or one or both of two active nuclei; the outflows produce bubbles and filaments seen in shock tracers from warm molecular gas (H22.12
μ m) to optical ionized gas ([Oiii ], [Nii ], [Sii ], and [Oi ]) and hot plasma (FeXXV ). In the most distinct bubble, we see a clear shock front traced by high [Oiii ]/Hβ and [Oiii ]/[Oi ]. Cool molecular gas (CO(2−1)) is only present near the base of the bubble, toward the nuclei launching the outflow. We interpret the lack of molecular gas outside the bubble to mean that the shock front is not responsible for dissociating molecular gas, and conclude that the molecular clouds are partly shielded and either entrained briefly in the outflow, or left undisturbed while the hot wind flows around them. Elsewhere in the galaxy, shock-excited H2extends at least ∼4 kpc from the nuclei, tracing molecular gas even warmer than that between the nuclei, wheremore » -
Imaging the molecular interstellar medium in a gravitationally lensed star-forming galaxy at z = 5.7Aims . We present and study spatially resolved imaging obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) of multiple 12 CO( J = 6 − 5, 8−7, and 9−8) and two H 2 O(2 02 −1 11 and 2 11 −2 02 ) emission lines and cold dust continuum toward the gravitationally lensed dusty star-forming galaxy SPT 0346-52 at z = 5.656. Methods . Using a visibility-domain source-plane reconstruction we probe the structure and dynamics of the different components of the interstellar medium (ISM) in this galaxy down to scales of 1 kpc in the source plane. Results . Measurements of the intrinsic sizes of the different CO emission lines indicate that the higher J transitions trace more compact regions in the galaxy. Similarly, we find smaller dust continuum intrinsic sizes with decreasing wavelength, based on observations at rest frame 130, 300, and 450 μ m. The source shows significant velocity structure, and clear asymmetry where an elongated structure is observed in the source plane with significant variations in their reconstructed sizes. This could be attributed to a compact merger or turbulent disk rotation. The differences in velocity structure through the different line tracers, however, hint at the former scenario in agreement with previousmore »
-
Abstract One of the most fundamental baryonic matter components of galaxies is the neutral atomic hydrogen (H
i ). At low redshifts, this component can be traced directly through the 21 cm transition, but to infer the Hi gas content of the most distant galaxies, a viable tracer is needed. We here investigate the fidelity of the fine-structure transition of the (2P 3/2−2P 1/3) transition of singly ionized carbon Cii at 158μ m as a proxy for Hi in a set simulated galaxies atz ≈ 6, following the work by Heintz et al. We select 11,125 star-forming galaxies from thesimba simulations, with far-infrared line emissions postprocessed and modeled within the Sigame framework. We find a strong connection between Cii and Hi , with the relation between this Cii -to-Hi relation (β [CII ]) being anticorrelated with the gas-phase metallicity of the simulated galaxies. We further use these simulations to make predictions for the total baryonic matter content of galaxies atz ≈ 6, and specifically the Hi gas mass fraction. We find mean values ofM H I/M ⋆= 1.4 andM H I/M bar,tot= 0.45. These results provide strong evidence for Hi being the dominant baryonic matter component by mass in galaxies atz ≈ 6. -
Abstract The nearby, luminous infrared galaxy NGC 7469 hosts a Seyfert nucleus with a circumnuclear star-forming ring and is thus the ideal local laboratory for investigating the starburst–AGN (active galactic nucleus) connection in detail. We present integral-field observations of the central 1.3 kpc region in NGC 7469 obtained with the JWST Mid-InfraRed Instrument. Molecular and ionized gas distributions and kinematics at a resolution of ∼100 pc over the 4.9–7.6
μ m region are examined to study the gas dynamics influenced by the central AGN. The low-ionization [Feii ]λ 5.34μ m and [Arii ]λ 6.99μ m lines are bright on the nucleus and in the starburst ring, as opposed to H2S(5)λ 6.91μ m, which is strongly peaked at the center and surrounding ISM. The high-ionization [Mgv ] line is resolved and shows a broad, blueshifted component associated with the outflow. It has a nearly face-on geometry that is strongly peaked on the nucleus, where it reaches a maximum velocity of −650 km s−1, and extends about 400 pc to the east. Regions of enhanced velocity dispersion in H2and [Feii ] ∼ 180 pc from the AGN that also show highL (H2)/L (PAH) andL ([Feii ])/L (Pfα ) ratios to the W and N of the nucleus pinpoint regions where the ionized outflow is depositing energy, via shocks, into themore »