skip to main content


Title: Wavelength‐Selective, Narrowband Graphene Transistor with a Plasmon‐Enhanced Pyroelectric Gate
  more » « less
NSF-PAR ID:
10419160
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Photonics Research
Volume:
4
Issue:
6
ISSN:
2699-9293
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Pyroelectric detectors are often broadband and require external filters for wavelength‐specific applications. This paper reports a tunable, narrowband, and lightweight pyroelectric infrared detector built upon a flexible membrane of As2S3−Ag−P(VDF‐TrFE) with subwavelength grating, which is capable of both on‐chip filtering and photopyroelectric energy conversion. The top surface of this hybrid membrane is a corrugated As2S3−Ag film contributing to narrowband light absorption in the near‐infrared (NIR) regime, and the bottom part is a polyvinylidene fluoride‐trifluoroethylene (PVDF‐TrFE) membrane for the conversion of the absorbed light to an electrical signal. Uniquely, applying a bias voltage to the PVDF‐TrFE membrane enables the tuning of the device's absorption and pyroelectric characteristics owing to the piezoelectrically induced mechanical bending. The resonator exhibited a resonant absorption coefficient of 80% and a full‐width‐half‐maximum of 15 nm within the NIR, a responsivity of 1.4 mV mW−1, and an equivalent noise power of 13 µW Hz−1/2at 1560 nm. By applying a 15‐V bias to the PVDF‐TrFE membrane, the absorption coefficient decreased to 18% due to the change in the grating period and incident angle. The narrowband and tunable features of the As2S3−Ag−P(VDF‐TrFE) pyroelectric detector will benefit a variety of potential applications in sensors, optical spectroscopy, and imaging.

     
    more » « less
  2. A plasmon-enhanced pyroelectric membrane was applied to control the current flow in a graphene transistor for light detection. The graphene transistor was built on a free-standing, 15-μm-thick PVDF membrane, which was doped using gold nanorods to facilitate its optical absorption. Under the resonant condition, the device exhibited a responsivity of 0.79 μA/mW.

     
    more » « less
  3. Biosensors based on graphene field effect transistors (GFETs) decorated with antibody‐functionalized platinum nanoparticles (PtNPs) are developed for the quantitative detection of breast cancer biomarker HER3. High‐quality chemical vapor deposited graphene is prepared and transferred over gold electrodes microfabricated on an SiO2/Si wafer to yield an array of 52 GFET devices. The GFETs are modified with PtNPs to obtain a hybrid nanostructure suitable for attachment of HER3‐specific, genetically engineered thiol‐containing single‐chain variable fragment antibodies (scFv) to realize a biosensor for HER3. Physical and electrical characterization of Bio‐GFET devices is carried out by electron microscopy, atomic force microscopy, Raman spectroscopy, and current–gate voltage measurements. A concentration‐dependent response of the biosensor to HER3 antigen is found in the range 300 fg mL−1to 300 ng mL−1and is in quantitative agreement with a model based on the Hill–Langmuir equation of equilibrium thermodynamics. Based on the dose–response data, the dissociation constant is estimated to be 800 pg mL−1, indicating that the high affinity of the scFv antibody is maintained after immobilization. The limit of detection is 300 fg mL−1, showing the potential for PtNP/G‐FETs to be used in label‐free biological sensors.

     
    more » « less
  4. Abstract

    Polymer ferroelectrics are playing an increasingly active role in flexible memory application and wearable electronics. The relaxor ferroelectric dielectric, poly(vinylidene fluoride trifluorethylene (PVDF‐TrFE), although vastly used in organic field‐effect transistors (FETs), has issues with gate leakage current especially when the film thickness is below 500 nm. This work demonstrates a novel method of selective poling the dielectric layer. By using solution‐processed 6,13‐bis(triisopropylsilylethynyl)pentacene (TIPS‐pentacene) as the organic semiconductor, it is shown that textured poling of the PVDF‐TrFE layer dramatically improves FET properties compared to unpoled or uniformly poled ferroelectric films. The texturing is achieved by first vertically poling the PVDF‐TrFE film and then laterally poling the dielectric layer close to the gate electrode. TIPS‐pentacene FETs show on/off ratios of 105and hole mobilities of 1 cm2Vs−1under ambient conditions with operating voltages well below −5 V. The electric field distribution in the dielectric layer is simulated by using finite difference time domain methods.

     
    more » « less
  5. Abstract

    Cation–π interactions between molecules and graphene are known to have a profound effect on the properties of the molecule/graphene nanohybrids and motivate this study to quantify the attachment of the rhodamine 6G (R6G) dye molecules on graphene and the photocarrier transfer channel formed across the R6G/graphene interface. By increasing the R6G areal density of the R6G on graphene field‐effect transistor (GFET) from 0 up to ≈3.6 × 1013cm−2, a linear shift of the Dirac point of the graphene from originally 1.2 V (p‐doped) to −1 V (n‐doped) is revealed with increasing number of R6G molecules. This indicates that the attachment of the R6G molecules on graphene is determined by the cation–π interaction between the NH+ in R6G and π electrons in graphene. Furthermore, a linear dependence of the photoresponse on the R6G molecule concentration to 550 nm illumination is observed on the R6G/graphene nanohybrid, suggesting that the cation–π interaction controls the R6G attachment configuration to graphene to allow formation of identical photocarrier transfer channels. On R6G/graphene nanohybrid with 7.2 × 107R6G molecules, high responsivity up to 5.15 × 102A W−1is obtained, suggesting molecule/graphene nanohybrids are promising for high‐performance optoelectronics.

     
    more » « less