ABSTRACT ObjectiveThe objective of this study was to quantify the effects of temperature, hydrology, and body size on the diet and energy requirements of a generalist predator, Common Snook Centropomus undecimalis (hereafter, “snook”), to gain a better understanding of predator–prey dynamics in the wake of global change. We first ask how temperature, hydrology, and body size influence the occurrence of fish, invertebrates, and empty stomachs in the diet of snook. Next, we model the energetic requirements of snook as a function of body size and temperature. Last, we use predation simulations to test how changes in prey quality, together with snook energy requirements, interact to shape prey demand. MethodsThis study used long-term empirical diet information for snook that were collected from the Shark River, Everglades National Park, alongside models of consumer energetic needs and predation simulations. We used a set of generalized linear models to determine the relationships between snook diet and a suite of predictor variables representing hydrology, temperature, and body size. Models of consumer energetic requirements were used to better understand the total daily caloric needs of snook across a range of temperature and body sizes relative to the available energy in the fish and invertebrate prey that were collected from the system. Last, we conducted predation simulations to highlight the effects of variable diet scenarios on the foraging behaviors that are required to meet the total daily energetic requirements of snook at various temperatures and body sizes. ResultsSnook were observed consuming less fish, coupled with an increased likelihood of empty stomachs, at higher temperatures. Reliance on invertebrate taxa increased at high marsh stages. In addition to marsh stage, smaller-bodied individuals were more likely to consume invertebrates. The predation simulations revealed that snook that consumed invertebrate-dominated diets required greater prey biomass as well as an increased number of individual prey items to meet their daily energetic requirements relative to fish that consumed diets that contain fish. However, if snook maintained even a small proportion of fish in their diet, it substantially reduced the number and biomass of prey needed to meet their energetic requirements. ConclusionsOur predation simulations indicated that snook should select for high-quality fish prey as temperatures warm. However, the empirical data revealed a decrease in the probability of high-quality fish prey in the diets of snook. Furthermore, the empirical diet data showed that low-quality invertebrate prey were more likely to be seen in the diets of snook at high water levels. As temperatures increase and hydrology becomes increasingly variable because of global change, snook will likely need to consume larger quantities of lower quality prey (i.e., compensatory foraging) or disperse to forage in more optimal habitats. These results highlight the dynamic interplay between environmental conditions and consumer energetic needs for shaping the foraging ecology of a generalist predator.
more »
« less
Integrating ocean observations across body‐size classes to deliver benthic invertebrate abundance and distribution information
Abstract Invertebrate animals living at the seafloor make up a prominent component of life globally, spanning 10 orders of magnitude in body size over 71% of Earth's surface. However, integrating information across sizes and sampling methodologies has limited our understanding of the influence of natural variation, climate change and human activity. Here, we outline maturing practices that can underpin both the feasibility and impact of establishing Benthic Invertebrate Abundance and Distribution as a Global Ocean Observing System—Essential Ocean Variable, including: (1) quantifying individual body size, (2) identifying the well‐quantified portions of sampled body‐size spectra, (3) taking advantage of (semi‐)automated information processing, (4) application of metadata standards such as Darwin Core, and (5) making data available through internationally recognized access points. These practices enable broader‐scale analysis supporting research and sustainable development, such as assessments of indicator taxa, biodiversity, biomass, and the modeling of carbon stocks and flows that are contiguous over time and space.
more »
« less
- Award ID(s):
- 2114717
- PAR ID:
- 10419204
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Limnology and Oceanography Letters
- Volume:
- 8
- Issue:
- 5
- ISSN:
- 2378-2242
- Format(s):
- Medium: X Size: p. 692-706
- Size(s):
- p. 692-706
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Each year, underwater remotely operated vehicles (ROVs) collect thousands of hours of video of unexplored ocean habitats revealing a plethora of information regarding biodiversity on Earth. However, fully utilizing this information remains a challenge as proper annotations and analysis require trained scientists’ time, which is both limited and costly. To this end, we present a Dataset for Underwater Substrate and Invertebrate Analysis (DUSIA), a benchmark suite and growing large-scale dataset to train, validate, and test methods for temporally localizing four underwater substrates as well as temporally and spatially localizing 59 underwater invertebrate species. DUSIA currently includes over ten hours of footage across 25 videos captured in 1080p at 30 fps by an ROV following pre-planned transects across the ocean floor near the Channel Islands of California. Each video includes annotations indicating the start and end times of substrates across the video in addition to counts of species of interest. Some frames are annotated with precise bounding box locations for invertebrate species of interest, as seen in Fig. 1. To our knowledge, DUSIA is the first dataset of its kind for deep sea exploration, with video from a moving camera, that includes substrate annotations and invertebrate species that are present at significant depths where sunlight does not penetrate. Additionally, we present the novel context-driven object detector (CDD) where we use explicit substrate classification to influence an object detection network to simultaneously predict a substrate and species class influenced by that substrate. We also present a method for improving training on partially annotated bounding box frames. Finally, we offer a baseline method for automating the counting of invertebrate species of interest.more » « less
-
Abstract Positive correlation between trout abundance and dissolved metal concentrations along the Upper Clark Fork River (UCFR; Montana, USA) have forced restoration practitioners to seek underlying causes of reduced fish density beyond heavy metal contamination. Throughout the river, nutrient enrichment and summer algal blooms may be hindering full recovery of trout populations. In this study, we evaluated the community structure and metal body burdens of benthic invertebrates and characterized existing trophic linkages between brown trout and dominant invertebrate taxa before and during summer algal blooms in a downstream reach of the UCFR where fish densities are low (20–30 trout/km), and where metal contamination is relevant but minimal compared with upstream. In spring, estimated invertebrate abundance was 1,727 ± 217 individuals/m2and dominated by Ephemerellidae and Baetidae families. During summer algal bloom, invertebrate abundance increased 15‐fold (20,580 ± 3,510 individuals/m2) mostly due to greater abundance of Chironomidae, Hydropsychidae, and Simulidae. Copper body burdens (130 ± 42 ppm) were higher than any other heavy metal regardless of season, but detectable concentrations of arsenic, cadmium, and lead were also found. A Bayesian mixing model combining metal burdens and stable isotopes showed that in the spring, trout of average size (355 ± 65 g) relied mostly on epibenthic taxa (Ephemerellidae and Hydropsychidae), contrasting with small (<100 g) and large (>400 g) trout relying heavily on Baetidae, a major component of invertebrate drift. Foraging segregation related to trout size did not occur during summer algal blooms, which may reflect increasing influence of benthic algal proliferation or indicate the indiscriminate use of pool habitats as thermal refugia over summer conditions by trout of different ages.more » « less
-
Body size is an important species trait, correlating with life span, fecundity, and other ecological factors. Over Earth’s geological history, climate shifts have occurred, potentially shaping body size evolution in many clades. General rules attempting to summarize body size evolution include Bergmann’s rule, which states that species reach larger sizes in cooler environments and smaller sizes in warmer environments, and Cope’s rule, which poses that lineages tend to increase in size over evolutionary time. Tetraodontiform fishes (including pufferfishes, boxfishes, and ocean sunfishes) provide an extraordinary clade to test these rules in ectotherms owing to their exemplary fossil record and the great disparity in body size observed among extant and fossil species. We examined Bergmann’s and Cope’s rules in this group by combining phylogenomic data (1,103 exon loci from 185 extant species) with 210 anatomical characters coded from both fossil and extant species. We aggregated data layers on paleoclimate and body size from the species examined, and inferred a set of time-calibrated phylogenies using tip-dating approaches for downstream comparative analyses of body size evolution by implementing models that incorporate paleoclimatic information. We found strong support for a temperature-driven model in which increasing body size over time is correlated with decreasing oceanic temperatures. On average, extant tetraodontiforms are two to three times larger than their fossil counterparts, which otherwise evolved during periods of warmer ocean temperatures. These results provide strong support for both Bergmann’s and Cope’s rules, trends that are less studied in marine fishes compared to terrestrial vertebrates and marine invertebrates.more » « less
-
null (Ed.)Ocean temperature observations are crucial for a host of climate research and forecasting activities, such as climate monitoring, ocean reanalysis and state estimation, seasonal-to-decadal forecasts, and ocean forecasting. For all of these applications, it is crucial to understand the uncertainty attached to each of the observations, accounting for changes in instrument technology and observing practices over time. Here, we describe the rationale behind the uncertainty specification provided for all in situ ocean temperature observations in the International Quality-controlled Ocean Database (IQuOD) v0.1, a value-added data product served alongside the World Ocean Database (WOD). We collected information from manufacturer specifications and other publications, providing the end user with uncertainty estimates based mainly on instrument type, along with extant auxiliary information such as calibration and collection method. The provision of a consistent set of observation uncertainties will provide a more complete understanding of historical ocean observations used to examine the changing environment. Moving forward, IQuOD will continue to work with the ocean observation, data assimilation and ocean climate communities to further refine uncertainty quantification. We encourage submissions of metadata and information about historical practices to the IQuOD project and WOD.more » « less
An official website of the United States government
