With an aging world population, there is an increased risk of fracture and impaired healing. One contributing factor may be aging‐associated decreases in vascular function; thus, enhancing angiogenesis could improve fracture healing. Both bone morphogenetic protein 2 (BMP‐2) and thrombopoietin (TPO) have pro‐angiogenic effects. The aim of this study was to investigate the effects of treatment with BMP‐2 or TPO on the in vitro angiogenic and proliferative potential of endothelial cells (ECs) isolated from lungs (LECs) or bone marrow (BMECs) of young (3‐4 months) and old (22‐24 months), male and female, C57BL/6J mice. Cell proliferation, vessel‐like structure formation, migration, and gene expression were used to evaluate angiogenic properties. In vitro characterization of ECs generally showed impaired vessel‐like structure formation and proliferation in old ECs compared to young ECs, but improved migration characteristics in old BMECs. Differential sex‐based angiogenic responses were observed, especially with respect to drug treatments and gene expression. Importantly, these studies suggest that NTN1, ROBO2, and SLIT3, along with angiogenic markers (CD31, FLT‐1, ANGPT1, and ANGP2) differentially regulate EC proliferation and functional outcomes based on treatment, sex, and age. Furthermore, treatment of old ECs with TPO typically improved vessel‐like structure parameters, but impaired migration. Thus, TPO may serve as an alternative treatment to BMP‐2 for fracture healing in aging owing to improved angiogenesis and fracture healing, and the lack of side effects associated with BMP‐2.
This content will become publicly available on April 2, 2024
Clinical and animal studies have reported the influence of sex on the incidence and progression of tendinopathy, which results in disparate structural and biomechanical outcomes. However, there remains a paucity in our understanding of the sex‐specific biological mechanisms underlying effective tendon healing. To overcome this hurdle, our group has investigated the impact of sex on tendon regeneration using the super‐healer Murphy Roths Large (MRL/MpJ) mouse strain. We have previously shown that the scarless healing capacity of MRL/MpJ patellar tendons is associated with sexually dimorphic regulation of gene expression for pathways involved in fibrosis, cell migration, adhesion, and extracellular matrix (ECM) remodeling following an acute mid‐substance injury. Thus, we hypothesized that MRL/MpJ scarless tendon healing is mediated by sex‐specific and temporally distinct orchestration of cell–ECM interactions. Accordingly, the present study comparatively evaluated MRL/MpJ tendon cells on two‐dimensional (2D; glass) and scaffold platforms to examine cell behavior under biochemical and topographical cues associated with tendon homeostasis and healing. Female MRL/MpJ cells showed reduced 2D migration and spreading area accompanied by enhanced mechanosensing, ECM alignment, and fibronectin‐mediated cell proliferation compared to male MRL/MpJ cells. Interestingly, female MRL/MpJ cells cultured on isotropic scaffolds showed diminished cell–ECM organization compared to male MRL/MpJ cells. Lastly, MRL/MpJ cells elicited enhanced cytoskeletal elongation and alignment, ECM deposition and organization, and connexin 43‐mediated intercellular communication compared to male B6 cells, regardless of culture condition or sex. These results provide insight into the cellular features conserved within the MRL/MpJ phenotype and potential sex‐specific targets for the development of more equitable therapeutics.
more » « less- NSF-PAR ID:
- 10419266
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Journal of Orthopaedic Research
- Volume:
- 41
- Issue:
- 10
- ISSN:
- 0736-0266
- Page Range / eLocation ID:
- p. 2273-2286
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Background The etiology of sporadic Parkinson’s disease (PD) remains uncertain, but genetic, epidemiological, and physiological overlap between PD and inflammatory bowel disease suggests that gut inflammation could promote dysfunction of dopamine-producing neurons in the brain. Mechanisms behind this pathological gut-brain effect and their interactions with sex and with environmental factors are not well understood but may represent targets for therapeutic intervention.
Methods We sought to identify active inflammatory mechanisms which could potentially contribute to neuroinflammation and neurological disease in colon biopsies and peripheral blood immune cells from PD patients. Then, in mouse models, we assessed whether dextran sodium sulfate-mediated colitis could exert lingering effects on dopaminergic pathways in the brain and whether colitis increased vulnerability to a subsequent exposure to the dopaminergic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). We assessed the involvement of inflammatory mechanisms identified in the PD patients in colitis-related neurological dysfunction in male and female mice, utilizing mice lacking the Regulator of G-Protein Signaling 10 (RGS10)—an inhibitor of nuclear factor kappa B (NFκB)—to model enhanced NFκB activity, and mice in which CD8+T-cells were depleted.
Results High levels of inflammatory markers including
CD8B and NFκB p65 were found in colon biopsies from PD patients, and reduced levels of RGS10 were found in immune cells in the blood. Male mice that experienced colitis exhibited sustained reductions in tyrosine hydroxylase but not in dopamine as well as sustained CD8+T-cell infiltration and elevatedIfng expression in the brain. CD8+T-cell depletion prevented colitis-associated reductions in dopaminergic markers in males. In both sexes, colitis potentiated the effects of MPTP. RGS10 deficiency increased baseline intestinal inflammation, colitis severity, and neuropathology.Conclusions This study identifies peripheral inflammatory mechanisms in PD patients and explores their potential to impact central dopaminergic pathways in mice. Our findings implicate a sex-specific interaction between gastrointestinal inflammation and neurologic vulnerability that could contribute to PD pathogenesis, and they establish the importance of CD8+T-cells in this process in male mice.
Graphical abstract -
Abstract The extracellular matrix (ECM) is the primary biomechanical environment that interacts with tendon cells (tenocytes). Stresses applied via muscle contraction during skeletal movement transfer across structural hierarchies to the tenocyte nucleus in native uninjured tendons. Alterations to ECM structural and mechanical properties due to mechanical loading and tissue healing may affect this multiscale strain transfer and stress transmission through the ECM. This study explores the interface between dynamic loading and tendon healing across multiple length scales using living tendon explants. Results show that macroscale mechanical and structural properties are inferior following high magnitude dynamic loading (fatigue) in uninjured living tendon and that these effects propagate to the microscale. Although similar macroscale mechanical effects of dynamic loading are present in healing tendon compared to uninjured tendon, the microscale properties differed greatly during early healing. Regression analysis identified several variables (collagen and nuclear disorganization, cellularity, and F-actin) that directly predict nuclear deformation under loading. Finite element modeling predicted deficits in ECM stress transmission following fatigue loading and during healing. Together, this work identifies the multiscale response of tendon to dynamic loading and healing, and provides new insight into microenvironmental features that tenocytes may experience following injury and after cell delivery therapies.
-
Genes that regulate hormone release are essential for maintaining metabolism and energy balance. Egr1 encodes a transcription factor that regulates hormone production and release, and a decreased in growth hormones has been reported in Egr1 knockout mice. A reduction in growth hormones has also been observed in Nestin-Cre mice, a model frequently used to study the nervous system. Currently, it is unknown how Egr1 loss or the Nestin-Cre driver disrupt pituitary gene expression. Here, we compared the growth curves and pituitary gene expression profiles of Nestin-Cre-mediated Egr1 conditional knockout (Egr1cKO) mice with those of their controls. Reduced body weight was observed in both the Nestin-Cre and Egr1cKO mice, and the loss of Egr1 had a slightly more severe impact on female mice than on male mice. RNA-seq data analyses revealed that the sex-related differences were amplified in the Nestin-Cre-mediated Egr1 conditional knockout mice. Additionally, in the male mice, the influence of Egr1cKO on pituitary gene expression may be overridden by the Nestin-Cre driver. Differentially expressed genes associated with the Nestin-Cre driver were significantly enriched for genes related to growth factor activity and binding. Altogether, our results demonstrate that Nestin-Cre and the loss of Egr1 in the neuronal cell lineage have distinct impacts on pituitary gene expression in a sex-specific manner.
-
Abstract Formation of epithelial structures of variegated geometries and sizes is essential for organogenesis, tumor growth, and wound repair. Although epithelial cells are predisposed with potential for multicellular clustering, it remains unclear whether immune cells and mechanical cues from their microenvironment influence this process. To explore this possibility, we cocultured human mammary epithelial cells with prepolarized macrophages on soft or stiff hydrogels. In the presence of M1 (proinflammatory) macrophages on soft matrices, epithelial cells migrated faster and subsequently formed larger multicellular clusters compared to cocultures with M0 (unpolarized) or M2 (anti‐inflammatory) macrophages. By contrast, stiff matrices disabled active clustering of epithelial cells due to their enhanced migration and cell–ECM adhesion, regardless of macrophage polarization. We found that the copresence of soft matrices and M1 macrophages reduced focal adhesions, but enhanced fibronectin deposition and nonmuscle myosin‐IIA expression, which altogether optimize conditions for epithelial clustering. Upon ROCK inhibition, epithelial clustering was abrogated, indicating a requirement for optimized cellular forces. In these cocultures, TNF‐α secretion was the highest with M1 macrophages and TGF‐β secretion was exclusively detectable in case of M2 macrophages on soft gels, which indicated potential role of macrophage secreted factors in the observed epithelial clustering. Indeed, exogenous addition of TGF‐β promoted epithelial clustering with M1 coculture on soft gels. According to our findings, optimization of both mechanical and immune factors can tune epithelial clustering responses, which could have implications in tumor growth, fibrosis, and would healing.