skip to main content


Title: Enantiomeric discrimination by chiral electromagnetic resonance enhancement
Abstract

Circularly polarized light interacts preferentially with the biomolecules to generate spectral fingerprints reflecting their primary and secondary structure in the ultraviolet region of the electromagnetic spectrum. The spectral features can be transferred to the visible and near‐infrared regions by coupling the biomolecules with plasmonic assemblies made of noble metals. Nanoscale gold tetrahelices were used to detect the presence of chiral objects that are 40 times smaller in size by using plane‐polarized light of 550 nm wavelength. The emergence of chiral hotspots in the gaps between 80 nm long tetrahelices differentiate between weakly scattering S‐ vs R‐molecules with optical constants similar to that of organic solvents. Simulations map the spatial distribution of the scattered field to reveal enantiomeric discrimination with selectivity up to 0.54.

 
more » « less
NSF-PAR ID:
10419329
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Chirality
ISSN:
0899-0042
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Spin‐dependent contrasting phenomena atKandK′ valleys in monolayer semiconductors have led to addressable valley degree of freedom, which is the cornerstone for emerging valleytronic applications in information storage and processing. Tunable and active modulation of valley dynamics in a monolayer WSe2is demonstrated at room temperature through controllable chiral Purcell effects in plasmonic chiral metamaterials. The strong spin‐dependent modulation on the spontaneous decay of valley excitons leads to tunable handedness and spectral shift of valley‐polarized emission, which is analyzed and predicted by an advanced theoretical model and further confirmed by experimental measurements. Moreover, large active spectral tuning (≈24 nm) and reversible ON/OFF switching of circular polarization of emission are achieved by the solvent‐controllable thickness of the dielectric spacer in the metamaterials. With the on‐demand and active tunability in valley‐polarized emission, chiral Purcell effects can provide new strategies to harness valley excitons for applications in ultrathin valleytronic devices.

     
    more » « less
  2. Abstract

    In this report, a high‐performance all‐polymer organic photodetector that is sensitive to linearly polarized light throughout the visible spectrum is demonstrated. The active layer is a bulk heterojunction composed of an electron donor polymer PBnDT‐FTAZ and acceptor polymer P(NDI2OD‐T2) that have complementary spectral absorption resulting in efficient detection from 350 to 800 nm. The blend film exhibits good ductility with the ability to accommodate large strains of over 60% without fracture. This allows the film to undergo large uniaxial strain resulting in in‐plane alignment of both polymers making the film optically anisotropic and intrinsically polarization sensitive. The films are characterized by UV–vis spectroscopy and grazing incidence wide‐angle X‐ray scattering showing that both polymers have similar in‐plane backbone alignment and maintain packing order after being strained. The films are integrated into devices and characterized under linear polarized light. The strain‐oriented detectors have maximum photocurrent anisotropies of 1.4 under transverse polarized light while maintaining peak responsivities of 0.21 A W−1and a 3 dB cutoff frequency of ≈1 kHz. The demonstrated performance is comparable to the current state of the art all‐polymer photodetectors with the added capability of polarization sensitivity enabling new application opportunities.

     
    more » « less
  3. Abstract

    Deep eutectic solvents (DES) or eutectic mixtures prepared with a chiral component can lead to new chiral solvents with applications that include asymmetric synthesis and chiral light emitting materials. DES have low melting points, because of strong interactions, such as hydrogen bonding, between components of the mixture. Mixtures are prepared with ammonium salts, tetrabutylammonium chloride ([TBA]Cl) and choline chloride ([Ch]Cl), as hydrogen bond acceptor (HBA) and L‐lactic acid, L‐leucic acid, L‐ascorbic acid, R/S‐acetoxypropionic acid, and methyl‐(S)‐lactate as chiral hydrogen bond donors (HBD). Eight combinations of the HBAs and HBDs were prepared, and a racemic mixture of dissymmetric chiral europium complexes was dissolved in the mixtures. The circularly polarized luminescence (CPL) spectra were measured to determine the chiral discrimination by these chiral solvents. The CPL spectra show that the handedness of the chiral HBD is important to the chiral discrimination exhibited. However, the inversion of the sign of the CPL spectra in 1 : 3 [TBA]Cl:L‐lactic acid vs. 1 : 3 [Ch]Cl:L‐lactic acid, and 1 : 1.5 [Ch]Cl:L‐leucic acid vs. 1 : 1 [TBA]Cl:L‐leucic acid shows that the achiral HBA also plays a critical role in the handedness of the chiral discrimination by the chiral solvent.

     
    more » « less
  4. Abstract

    The giant circular photo‐galvanic effect is realized in chiral metals when illuminated by circularly polarized light. However, the structure itself is not switchable nor is the crystal chirality in the adjacent chiral domains. Here spindle‐shaped liquid crystalline elastomer microparticles that can switch from prolate to spherical to oblate reversibly upon heating above the nematic to isotropic transition temperature are synthesized. When arranged in a honeycomb lattice, the continuous shape change of the microparticles leads to lattice reconfiguration, from a right‐handed chiral state to an achiral one, then to a left‐handed chiral state, without breaking the translational symmetry. Accordingly, the sign of rotation of the polarized light passing through the lattices changes as measured by time‐domain terahertz spectroscopy. Further, it can locally alter the chirality in the adjacent domains using near‐infrared light illumination. The reconfigurable chiral microarrays will allow us to explore non‐trivial symmetry‐protected transport modes of topological lattices at the light–matter interface. Specifically, the ability to controllably create chiral states at the boundary of the achiral/chiral domains will lead to rich structures emerging from the interplay of symmetry and topology.

     
    more » « less
  5. Abstract

    Trigonal tellurium (Te) is a chiral semiconductor that lacks both mirror and inversion symmetries, resulting in complex band structures with Weyl crossings and unique spin textures. Detailed time-resolved polarized reflectance spectroscopy is used to investigate its band structure and carrier dynamics. The polarized transient spectra reveal optical transitions between the uppermost spin-splitH4andH5and the degenerateH6valence bands (VB) and the lowest degenerateH6conduction band (CB) as well as a higher energy transition at the L-point. Surprisingly, the degeneracy of theH6CB (a proposed Weyl node) is lifted and the spin-split VB gap is reduced upon photoexcitation before relaxing to equilibrium as the carriers decay. Using ab initio density functional theory (DFT) calculations, we conclude that the dynamic band structure is caused by a photoinduced shear strain in the Te film that breaks the screw symmetry of the crystal. The band-edge anisotropy is also reflected in the hot carrier decay rate, which is a factor of two slower along the c-axis than perpendicular to it. The majority of photoexcited carriers near the band-edge are seen to recombine within 30 ps while higher lying transitions observed near 1.2 eV appear to have substantially longer lifetimes, potentially due to contributions of intervalley processes in the recombination rate. These new findings shed light on the strong correlation between photoinduced carriers and electronic structure in anisotropic crystals, which opens a potential pathway for designing novel Te-based devices that take advantage of the topological structures as well as strong spin-related properties.

     
    more » « less