skip to main content


Title: When birds sing at the same pitch, they avoid singing at the same time

Birds singing in choruses must contend with the possibility of interfering with each other's songs, but not all species will interfere with each other to the same extent due to signal partitioning. Some evidence suggests that singing birds will avoid temporal overlap only in cases where there is overlap in the frequencies their songs occupy, but the extent to which this behaviour varies according to level of frequency overlap is not yet well understood. We investigated the hypothesis that birds will increasingly avoid heterospecific temporal overlap as their frequency overlap increases by testing for a linear correlation between frequency overlap and temporal avoidance across a community of temperate eastern North American birds. We found that there was a significant correlation across the whole community and within 12 of 15 commonly occurring individual species, which supports our hypothesis and adds to the growing body of evidence that birds adjust the timing of their songs in response to frequency overlap.

 
more » « less
Award ID(s):
1935507
NSF-PAR ID:
10419360
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ibis
Volume:
165
Issue:
3
ISSN:
0019-1019
Page Range / eLocation ID:
p. 1047-1053
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Selective logging is the primary cause of tropical forest degradation and is rapidly expanding worldwide. While the impacts of logging on species diversity and distributions are well understood, little is known about the effects of logging on animal behaviours central to individual fitness and population persistence.

    The song rate of breeding songbirds is a behavioural trait that is often positively associated with male density and used by conspecific females as an indicator of territory and male quality. Thus, contrasting logging‐induced adjustments in song rates of individual birds with population shifts may illuminate potential mechanisms underlying population distributions.

    We present a novel application of bioacoustic monitoring, integrating counts of individuals, songs and duets from single automated recording units (ARUs) withN‐mixture models, to estimate shifts in population parameters (occupancy, abundance) and singing behaviours (per‐capita song rates, per‐pair duet rates) of 32 Bornean songbird species with logging. We tested hypotheses on the relationships between adjustments in behavioural and population parameters with logging, and further tested the extent to which species traits predicted behavioural and population shifts.

    Adjustments to singing behaviour in 59 and 53% of species (57% of duetting species) were concordant with differences in occupancy and abundance respectively, such that species showing reduced populations with logging also produced fewer songs per‐capita, and vice versa. Species known to prefer undisturbed habitats and large‐bodied species showed the most negative effects of logging on singing behaviour and population distributions. Species known to exploit degraded habitats exhibited the opposite pattern. Subdued singing in logged forests by species of conservation concern suggests limited competition between territorial males in small populations and may also signal low‐quality territories.

    Synthesis and applications. We demonstrate that bioacoustic monitoring can be used to not only estimate important population parameters of occupancy and abundance across a diverse tropical songbird community, but also enables quantification of behaviours considered relevant to individual fitness, yet unobtainable with conventional methods (e.g. point counts). Bioacoustics provides a viable approach to reliable automated large‐scale monitoring of hyperdiverse tropical forest systems under logging operations and other land‐use pressures.

     
    more » « less
  2. Abstract

    Climate change is increasing aridity in grassland and desert habitats across the southwestern United States, reducing available resources and drastically changing the breeding habitat of many bird species. Increases in aridity reduce sound propagation distances, potentially impacting habitat soundscapes, and could lead to a breakdown of the avian soundscapes in the form of loss of vocal culture, reduced mating opportunities, and local population extinctions. We developed an agent‐based model to examine how changes in aridity will affect both sound propagation and the ability of territorial birds to audibly contact their neighbors. We simulated vocal signal attenuation under a variety of environmental scenarios for the south, central semi‐arid prairies of the United States, ranging from contemporary weather conditions to predicted droughts under climate change. We also simulated how changes in physiological conditions, mainly evaporative water loss (EWL), would affect singing behavior. Under contemporary and climate change‐induced drought conditions, we found that significantly fewer individuals successfully contacted all adjacent neighbors than did individuals in either the contemporary or predicted climate change conditions. We also found that at higher sound frequencies and higher EWL, fewer individuals were able to successfully contact all their neighbors, particularly in drought and climate change drought conditions. These results indicate that climate change‐mediated aridification may alter the avian soundscape, such that vocal communication no longer effectively functions for mate attraction or territorial defense. As climate change progresses, increased aridity in current grasslands may favor shifts toward low‐frequency songs, colonial resource use, and altered songbird community compositions.

     
    more » « less
  3. Abstract

    Signalers may benefit in some contexts from advertising their ages, for example in courting potential mates. Receivers in turn may benefit from assessing a signaler’s age, even in cases where their doing so is against the signaler’s interests. Indicators of age contained in signals thus may have important fitness consequences for both signalers and receivers. In birds, males of many species have been shown to display delayed maturation of their songs, resulting in older males singing songs that are higher in quality in one or more characteristics. Conversely, it seems possible that songs might eventually deteriorate with age as an aspect behavioral senescence. Studies of birdsong long enough to test both possibilities are quite uncommon, with nearly all studies aspect of age-dependent changes in birdsong spanning 3 or fewer years of males’ lives. Here, we present the longest longitudinal analysis of male birdsong to date, in which we analyze songs recorded for 4–11 years of the lives of captive male swamp sparrows. We find that males displayed delayed maturation of three song characteristics: song rate, song length, and consistency between songs. Delayed maturation was followed by behavioral senescence of three characteristics: song rate, stereotypy within songs, and consistency between songs. Because song quality declined in males beyond 2 years of age, this evidence is inconsistent with a signaling system in which females both prefer increasingly older males and are able to accurately determine male age through song assessment. Rather, our evidence suggests that swamp sparrows should be able to use song to distinguish intermediate-aged males from 1-year-old and very old males.

     
    more » « less
  4. Abstract

    Sexual displays are some of the most dramatic and varied behaviors that have been documented. The elaboration of such behaviors often relies on the modification of existing morphology. To understand how display elaboration arises, we analyzed the laryngeal anatomy of three species of mice that vary in the presence and complexity of their vocal displays. Mice and rats have a specialized larynx that enables them to produce both low‐frequency “audible” sounds, perhaps using vocal fold vibration, as well as distinct mechanisms that are thought to enable higher frequency sounds, such as vocal membrane vibration and intralaryngeal whistles. These mechanisms rely on different structures within the larynx. Using histology, we characterized laryngeal anatomy in Alston's singing mouse (Scotinomys teguina), the northern pygmy mouse (Baiomys taylori), and the laboratory mouse (Mus musculus), which produce different types of vocalizations. We found evidence of a vocal membrane in all species, as well as species differences in vocal fold and ventral pouch size. Presence of a vocal membrane in these three species, which are not known to use vocal membrane vibration, suggests that this structure may be widespread among muroid rodents. An expanded ventral pouch in singing and pygmy mice suggests that these mice may use an intralaryngeal whistle to produce their advertisement songs, and that an expanded ventral pouch may enable lower frequencies than laboratory mouse whistle‐produced sounds. Variation in the laryngeal anatomy of rodents fits into a larger pattern across terrestrial vertebrates, where the development and modification of vocal membranes and pouches, or air sacs, are common mechanisms by which vocalizations diversify. Understanding variation in the functional anatomy of relevant organs is the first step in understanding how morphological changes enable novel displays.

     
    more » « less
  5. Abstract

    Vocal signals mediate social relationships, and among networks of territorial animals, information is often shared via broadcast vocalizations. Anthropogenic noise may disrupt communication among individuals within networks, as animals change the way they vocalize in noise. Furthermore, constraints on signal transmission, including frequency masking and distance, may affect information exchange following a disruption in social networks. We tested the hypothesis that signaling interactions within networks of breeding male and female house wrens (Troglodytes aedon) depend on distance, ambient noise, and receiver nesting stage. We used playback experiments to simulate territorial intrusions with and without noise playbacks on the territories of established males and simultaneously recorded the vocal responses of neighbors. To examine whether intrusions impacted interactions between males, we used randomization tests to determine whether treatment, distance, noise, or nesting stage affected vocal coordination between challenged and neighboring males. We also quantified singing patterns to explore whether intrusions on territories of challenged males affected singing by males and females on neighboring territories. Males sang at the lowest rates and were less likely to overlap songs with the challenged male when their partner was laying, compared to males during early and late nesting stages. Noise and distance did not affect vocal coordination or male singing rates. Fewer females sang during the intruder‐only treatment compared to the control and intrusions with noise. Added noise in the territories of challenged males may have masked signals, and as a result, females only changed their behavior during the intruder‐only treatment. Our results suggest that the fertility of breeding partners may be more important to males than short‐term changes on rival male territories. Elevated noise did little to alter male responses to threats within networks. Females appeared to eavesdrop on interactions involving neighboring males, but noise may have prevented detection of their interactions.

     
    more » « less