skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Environmental conditions lead to shifts in individual communication, which can cause cascading effects on soundscape composition
Abstract Climate change is increasing aridity in grassland and desert habitats across the southwestern United States, reducing available resources and drastically changing the breeding habitat of many bird species. Increases in aridity reduce sound propagation distances, potentially impacting habitat soundscapes, and could lead to a breakdown of the avian soundscapes in the form of loss of vocal culture, reduced mating opportunities, and local population extinctions. We developed an agent‐based model to examine how changes in aridity will affect both sound propagation and the ability of territorial birds to audibly contact their neighbors. We simulated vocal signal attenuation under a variety of environmental scenarios for the south, central semi‐arid prairies of the United States, ranging from contemporary weather conditions to predicted droughts under climate change. We also simulated how changes in physiological conditions, mainly evaporative water loss (EWL), would affect singing behavior. Under contemporary and climate change‐induced drought conditions, we found that significantly fewer individuals successfully contacted all adjacent neighbors than did individuals in either the contemporary or predicted climate change conditions. We also found that at higher sound frequencies and higher EWL, fewer individuals were able to successfully contact all their neighbors, particularly in drought and climate change drought conditions. These results indicate that climate change‐mediated aridification may alter the avian soundscape, such that vocal communication no longer effectively functions for mate attraction or territorial defense. As climate change progresses, increased aridity in current grasslands may favor shifts toward low‐frequency songs, colonial resource use, and altered songbird community compositions.  more » « less
Award ID(s):
2021880
PAR ID:
10484156
Author(s) / Creator(s):
; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Ecology and Evolution
Volume:
12
Issue:
10
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Under drought conditions, arbuscular mycorrhizal (AM) fungi may improve plant performance by facilitating the movement of water through extensive hyphal networks. When these networks interconnect neighboring plants in common mycorrhizal networks (CMNs), CMNs are likely to partition water among many individuals. The consequences of CMN-mediated water movement for plant interactions, however, are largely unknown. We set out to examine CMN-mediated interactions amongAndropogon gerardiiseedlings in a target-plant pot experiment, with watering (watered or long-term drought) and CMN status (intact or severed) as treatments. Intact CMNs improved the survival of seedlings under drought stress and mediated positive, facilitative plant interactions in both watering treatments. Watering increased mycorrhizal colonization rates and improved P uptake, particularly for large individuals. Under drought conditions, improved access to water most likely benefited neighboring plants interacting across CMNs. CMNs appear to have provided the most limiting resource within each treatment, whether P, water, or both, thereby improving survival and growth. Neighbors near large, photosynthate-fixing target plants likely benefited from their establishment of extensive hyphal networks that could access water and dissolved P within soil micropores. In plant communities, CMNs may be vital during drought, which is expected to increase in frequency, intensity, and length with climate change. 
    more » « less
  2. Abstract Acoustic recordings of soundscapes are an important category of audio data that can be useful for answering a variety of questions, and an entire discipline within ecology, dubbed “soundscape ecology,” has risen to study them. Bird sound is often the focus of studies of soundscapes due to the ubiquitousness of birds in most terrestrial environments and their high vocal activity. Autonomous acoustic recorders have increased the quantity and availability of recordings of natural soundscapes while mitigating the impact of human observers on community behavior. However, such recordings are of little use without analysis of the sounds they contain. Manual analysis currently stands as the best means of processing this form of data for use in certain applications within soundscape ecology, but it is a laborious task, sometimes requiring many hours of human review to process comparatively few hours of recording. For this reason, few annotated data sets of soundscape recordings are publicly available. Further still, there are no publicly available strongly labeled soundscape recordings of bird sounds that contain information on timing, frequency, and species. Therefore, we present the first data set of strongly labeled bird sound soundscape recordings under free use license. These data were collected in the Northeastern United States at Powdermill Nature Reserve, Rector, Pennsylvania, USA. Recordings encompass 385 minutes of dawn chorus recordings collected by autonomous acoustic recorders between the months of April through July 2018. Recordings were collected in continuous bouts on four days during the study period and contain 48 species and 16,052 annotations. Applications of this data set may be numerous and include the training, validation, and testing of certain advanced machine‐learning models that detect or classify bird sounds. There are no copyright or propriety restrictions; please cite this paper when using materials within. 
    more » « less
  3. Abstract PremiseIncreased aridity and drought associated with climate change are exerting unprecedented selection pressures on plant populations. Whether populations can rapidly adapt, and which life history traits might confer increased fitness under drought, remain outstanding questions. MethodsWe utilized a resurrection ecology approach, leveraging dormant seeds from herbarium collections to assess whether populations ofPlantago patagonicafrom the semi‐arid Colorado Plateau have rapidly evolved in response to approximately ten years of intense drought in the region. We quantified multiple traits associated with drought escape and drought resistance and assessed the survival of ancestors and descendants under simulated drought. ResultsDescendant populations displayed a significant shift in resource allocation, in which they invested less in reproductive tissues and relatively more in both above‐ and below‐ground vegetative tissues. Plants with greater leaf biomass survived longer under terminal drought; moreover, even after accounting for the effect of increased leaf biomass, descendant seedlings survived drought longer than their ancestors. ConclusionsOur results document rapid adaptive evolution in response to climate change in a selfing annual and suggest that shifts in tissue allocation strategies may underlie adaptive responses to drought in arid or semi‐arid environments. This work also illustrates a novel approach, documenting that under specific circumstances, seeds from herbarium specimens may provide an untapped source of dormant propagules for future resurrection experiments. 
    more » « less
  4. Human activity around the globe is a growing source of selection pressure on animal behavior and communication systems. Some animals can modify their vocalizations to avoid masking from anthropogenic noise. However, such modifications can also affect the salience of these vocalizations in functional contexts such as competition and mate choice. Such is the case in the well-studied Nuttall's white-crowned sparrow ( Zonotrichia leucophrys nuttalli ), which lives year-round in both urban San Francisco and nearby rural Point Reyes. A performance feature of this species' song is salient in territorial defense, such that higher performance songs elicit stronger responses in simulated territorial intrusions; but songs with lower performance values transmit better in anthropogenic noise. A key question then is whether vocal performance signals male quality and ability to obtain high quality territories in urban populations. We predicted white-crowned sparrows with higher vocal performance will be in better condition and will tend to hold territories with lower noise levels and more species-preferred landscape features. Because white-crowned sparrows are adapted to coastal scrub habitats, we expect high quality territories to contain lower and less dense canopies, less drought, more greenness, and more flat open ground for foraging. To test our predictions, we recorded songs and measured vocal performance and body condition (scaled mass index and fat score) for a set of urban and rural birds ( N = 93), as well as ambient noise levels on their territories. Remote sensing metrics measured landscape features of territories, such as drought stress (NDWI), greenness (NDVI), mean canopy height, maximum height, leaf area density (understory and canopy), slope, and percent bare ground for a 50 m radius on each male territory. We did not find a correlation between body condition and performance but did find a relationship between noise levels and performance. Further, high performers held territories with lower canopies and less dense vegetation, which are species-preferred landscape features. These findings link together fundamental aspects of sexual selection in that habitat quality and the quality of sexually selected signals appear to be associated: males that have the highest performing songs are defending territories of the highest quality. 
    more » « less
  5. The ocean’s soundscape is fundamental to marine ecosystems, not only as a source of sensory information critical to many ecological processes but also as an indicator of biodiversity and habitat health. Yet, little is known about how ecoacoustic activity in marine habitats is altered by environmental changes such as temperature. The sounds produced by dense colonies of snapping shrimp dominate temperate and tropical coastal soundscapes worldwide and are a major driver broadband sound pressure level (SPL) patterns. Field recordings of soundscape patterns from the range limit of a snapping shrimp distribution showed that rates of snap production and associated SPL were closely positively correlated to water temperature. Snap rates changed by 15-60% per °C change in regional temperature, accompanied by fluctuations in SPL between 1-2 dB per °C. To test if this relationship was due to a direct effect of temperature, we measured snap rates in controlled experiments using two snapping shrimp species dominant in the Western Atlantic Ocean and Gulf of Mexico ( Alpheus heterochaelis and A. angulosus ). Snap rates were measured for shrimp held at different temperatures (across 10-30 °C range, with upper limit 2°C above current summer mean temperatures) and under different social groupings. Temperature had a significant effect on shrimp snap rates for all social contexts tested (individuals, pairs, and groups). For individuals and shrimp groups, snap production more than doubled between mid-range (20°C) and high (30°C) temperature treatments. Given that snapping shrimp sounds dominate the soundscapes of diverse habitats, including coral reefs, rocky bottoms, seagrass, and oyster beds, the strong influence of temperature on their activity will potentially alter soundscape patterns broadly. Increases in ambient sound levels driven by elevated water temperatures has ecological implications for signal detection, communication, and navigation in key coastal ecosystems for a wide range of organisms, including humans. 
    more » « less