skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The role of learned song in the evolution and speciation of Eastern and Spotted towhees
Oscine songbirds learn vocalizations that function in mate attraction and territory defense. Sexual selection pressures on these learned songs could accelerate speciation. The Eastern and Spotted towhees are sister species that diverged recently (0.28 Ma) but now have partially overlapping ranges with evidence of some hybridization; widespread community-science recordings of these species, including songs within their zone of overlap and from potential hybrids, enable us to investigate whether song differentiation might facilitate their reproductive isolation. Here, we quantify 16 song features to analyze geographic variation in Spotted and Eastern towhee songs and test for species-level differences. We then use random-forest models to measure how accurately their songs can be classified by species, both within and outside the zone of overlap. While no single song feature reliably distinguishes the two species, a random-forest model trained on 16 features accurately classified 89.5% of songs; interestingly, species classification was less accurate in the zone of overlap. Finally, our analysis of the limited publicly available genetic data from each species supports the hypothesis that they are reproductively isolated. Together, our results suggest that, in combination, small variations in song features may contribute to these sister species’ ability to recognize their species-specific songs.  more » « less
Award ID(s):
2327982 1926794
PAR ID:
10582316
Author(s) / Creator(s):
;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Oscine songbirds learn vocalizations that function in mate attraction and territory defense; sexual selection pressures on these learned songs could thus accelerate speciation. The Eastern and Spotted towhees are recently diverged sister species that now have partially overlapping ranges with evidence of some hybridization. Widespread community-science recordings of these species, including songs within their zone of overlap and from potential hybrids, enable us to investigate whether song differentiation might facilitate their reproductive isolation. Here, we quantify 16 song features to analyze geographic variation in Spotted and Eastern towhee songs and assess species-level differences. We then use several machine learning models to measure how accurately their songs can be classified by species. While no single song feature reliably distinguishes the two species, machine learning models classified songs with relatively high accuracy (random forest: 89.5%, deep learning: 90%, gradient boosting machine: 88%, convolutional neural network: 88%); interestingly, species classification was less accurate in their zone of overlap. Finally, our analysis of the limited publicly available genetic data from each species supports the hypothesis that the species are reproductively isolated. Together, our results suggest that small variations in multiple features may contribute to these sister species’ ability to recognize their species-specific songs. 
    more » « less
  2. Birds singing in choruses must contend with the possibility of interfering with each other's songs, but not all species will interfere with each other to the same extent due to signal partitioning. Some evidence suggests that singing birds will avoid temporal overlap only in cases where there is overlap in the frequencies their songs occupy, but the extent to which this behaviour varies according to level of frequency overlap is not yet well understood. We investigated the hypothesis that birds will increasingly avoid heterospecific temporal overlap as their frequency overlap increases by testing for a linear correlation between frequency overlap and temporal avoidance across a community of temperate eastern North American birds. We found that there was a significant correlation across the whole community and within 12 of 15 commonly occurring individual species, which supports our hypothesis and adds to the growing body of evidence that birds adjust the timing of their songs in response to frequency overlap. 
    more » « less
  3. The dark-eyed junco (Junco hyemalis) has experienced rapid phenotypic diversification within the last 18,000 years, resulting in several subspecies that reside in partially overlapping regions across North America. These subspecies have distinct plumage and morphology. If members of a subspecies disproportionately mate with one another, we would expect genetic differences to accumulate between the subspecies. In parallel, their learned songs could also accumulate changes. If song is used by individuals to recognize members of their own subspecies during mate selection, which would prevent the production of less fit hybrid offspring between subspecies, then song differences might co-localize with subspecies boundaries. Here, we quantify 10 song features to explore subspecies-level song variation using song recordings from community-science databases. We build a machine learning classifier to measure how accurately the subspecies’ songs can be distinguished from one another. Here, we show that songs of dark-eyed junco subspecies exhibit significant song-feature differences. However, these differences do not necessarily lead to distinguishability between subspecies. Notably, we find that subspecies pairs with adjacent ranges that do not hybridize have much more distinguishable songs, and also more evidence for genetic differentiation, than pairs that are known to hybridize. Thus, song distinguishability appears to have predictive power about which subspecies will hybridize, suggesting that song might play a role in reinforcing certain subspecies boundaries more than others. Finally, we analyze subspecies-level song differences alongside available genetic data and geographic coordinates to characterize the current evolutionary landscape of the dark-eyed junco subspecies complex. We observe geographic signal in the song and genetic data, indicating that individuals who share a range are more likely to share song characteristics and be genetically similar. This study illuminates the existence of subspecies-level song differences in the dark-eyed junco and provides further clarity on the role learned song plays in reinforcing reproductive boundaries between dark-eyed junco subspecies. 
    more » « less
  4. Learned traits are thought to be subject to different evolutionary dynamics than other phenotypes, but their evolutionary tempo and mode has received little attention. Learned bird song has been thought to be subject to rapid and constant evolution. However, we know little about the evolutionary modes of learned song divergence over long timescales. Here, we provide evidence that aspects of the territorial songs of Eastern Afromontane sky island sunbirds Cinnyris evolve in a punctuated fashion, with periods of stasis of the order of hundreds of thousands of years or more, broken up by evolutionary pulses. Stasis in learned songs is inconsistent with learned traits being subject to constant or frequent change, as would be expected if selection does not constrain song phenotypes over evolutionary timescales. Learned song may instead follow a process resembling peak shifts on adaptive landscapes. While much research has focused on the potential for rapid evolution in bird song, our results suggest that selection can tightly constrain the evolution of learned songs over long timescales. More broadly, these results demonstrate that some aspects of highly variable, plastic traits can exhibit punctuated evolution, with stasis over long time periods. 
    more » « less
  5. Abstract Geographic variation in bird song has received much attention in evolutionary studies, yet few consider components within songs that may be subject to different constraints and follow different evolutionary trajectories. Here, we quantify patterns of geographic variation in the socially transmitted “whistle” song of Albert's lyrebirds (Menura alberti), an oscine passerine renowned for its remarkable vocal abilities. Albert's lyrebirds are confined to narrow stretches of suitable habitat in Australia, allowing us to map likely paths of cultural transmission using a species distribution model and least cost paths. We use quantitative methods to divide the songs into three components present in all study populations: the introductory elements, the song body, and the final element. We compare geographic separation between populations with variation in these components as well as the full song. All populations were distinguishable by song, and songs varied according to the geographic distance between populations. However, within songs, only the introductory elements and song body could be used to distinguish among populations. The song body and final element changed with distance, but the introductory elements varied independently of geographic separation. These differing geographic patterns of within‐song variation are unexpected, given that the whistle song components are always produced in the same sequence and may be perceived as a temporally discrete unit. Knowledge of such spatial patterns of within‐song variation enables further work to determine possible selective pressures and constraints acting on each song component and provides spatially explicit targets for preserving cultural diversity. As such, our study highlights the importance for science and conservation of investigating spatial patterns within seemingly discrete behavioral traits at multiple levels of organization. 
    more » « less