- Award ID(s):
- 1955125
- NSF-PAR ID:
- 10419418
- Date Published:
- Journal Name:
- SSRN Electronic Journal
- ISSN:
- 1556-5068
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
The growing disparity between food supply and demand requires innovative Digital Agriculture (DA) systems to increase farm sustainability and profitability. However, current systems suffer from problems of complexity stemming from the challenge of integrating diverse, often non-interoperable hardware and software components. In order to tackle these complexities to increase farm efficiency and understand the tradeoffs of these new DA innovations we developed Realtime Optimization and Management System (ROAM), which is a decision-support system developed to find a Pareto optimal architectural design to build DA systems. To find the Pareto optimal solution, we employed the Rhodium Multi-Objective Evolutionary Algorithm (MOEA), which systematically evaluates the trade-offs in DA system designs. Based on data from five live deployments at Cornell University, each DA design can be analyzed based on user defined objectives and evaluated under uncertain farming environments with ROAM. Paired with this, we develop a web interface that allows users to define personalized decision spaces and visualize decision tradeoffs. To help validate ROAM, it was deployed to a commercial farm where the user was recommended a DA architecture design method to increase farm efficiency. ROAM allows users to quickly make key decisions in designing their DA systems to increase farm profitability.more » « less
-
This work is an experience with a deployed networked system for digital agriculture (or DA). Digital agriculture is the use of data-driven techniques towards a sustainable increase in farm productivity and efficiency. DA systems are expected to be overlaid on existing rural infrastructures, which are known to be less robust. While existing DA approaches partially address several infrastructure issues, challenges related to data aggregation, data analytics, and fault tolerance remain open. In this work, we present the design of Comosum, an extensible, reconfigurable, and fault-tolerant architecture of hardware, software, and distributed cloud abstractions to sense, analyze, and actuate on different farm types. FarmBIOS is an implementation of the Comosum architecture. We analyze FarmBIOS by leveraging various applications, deployment experiences, and network differences between urban and rural farms. This includes, for instance, an edge analytics application achieving 86% accuracy in vineyard disease detection. An eighteen-month deployment of FarmBIOS highlights Comosum’s fault tolerance. It was fault tolerant to intermittent network outages that lasted for several days during many periods of the deployment. We introduce active digital twins to cope with the unreliability of the underlying base systems.more » « less
-
Abstract BACKGROUND The Oklahoma Mesonet (the statewide environmental and weather monitoring network) has monitored changes in weather patterns since 1994 to provide accurate and timely mesoscale weather information to farmers and other groups. Studies are still scarce that would quantitatively assess farmers' perceptions about the value of the Oklahoma Mesonet contributions to agricultural operations, profitability of land management, and decision making. This paper aims to analyze those questions by means of an exploratory empirical study in Oklahoma for two groups of Mesonet users and non‐users.
RESULTS Familiarity with and application of Mesonet information determines farmers' profitability assessments and decision making. Farmers' perceptions are also influenced by the degree of previous exposure to weather‐related losses. The median estimate of the economic value of Mesonet information is $1000 per year. Mesonet users perceive higher profitability from the application of Mesonet data at 7.6/10, whereas Mesonet non‐users provided an average assessment of 2.6/10.
CONCLUSIONS Consistent use of Mesonet information results in a higher assessment of the importance of Mesonet. This research provides some initial insights into farmers' perceptions about the value of Oklahoma Mesonet information, which could guide stakeholders in developing measures to better serve farmers with environmental monitoring data for improved farm decisions. © 2018 Society of Chemical Industry
-
Penalty-based strategies, such as congestion pricing, have been employed to improve traffic network efficiency, but they face criticism for their negative impact on users and equity concerns. Collaborative routing, which allows users to negotiate route choices, offers a solution that considers individual heterogeneity. Personalized incentives can encourage such collaboration and are more politically acceptable than penalties. This study proposes a collaborative routing strategy that uses personalized incentives to guide users towards desired traffic states while promoting multidimensional equity. Three equity dimensions are considered: accessibility equity (equal access to jobs, services, and education), inclusion equity (route suggestions and incentives that do not favor specific users), and utility equity (envy-free solutions where no user feels others have more valuable incentives). The strategy prioritizes equitable access to societal services and activities, ensuring accessibility equity in routing solutions. Inclusion equity is maintained through non-negative incentives that consider user heterogeneity without excluding anyone. An envy-free compensation mechanism achieves utility equity by eliminating envy over incentive-route bundles. A constrained traffic assignment (CTA) formulation and consensus optimization variant are then devised to break down the centralized problem into smaller, manageable parts and a decentralized algorithm is developed for scalability in large transportation networks and user populations. Numerical studies investigate the model's enhancement of equity dimensions and the impact of hyperparameters on system objective tradeoffs and demonstrate the algorithm convergence.more » « less
-
Collecting, storing, and providing access to Internet of Things (IoT) data are fundamental tasks to many smart city projects. However, developing and integrating IoT systems is still a significant barrier to entry. In this work, we share insights on the development of cloud data storage and visualization tools for IoT smart city applications using flood warning as an example application. The developed system incorporates scalable, autonomous, and inexpensive features that allow users to monitor real-time environmental conditions, and to create threshold-based alert notifications. Built in Amazon Web Services (AWS), the system leverages serverless technology for sensor data backup, a relational database for data management, and a graphical user interface (GUI) for data visualizations and alerts. A RESTful API allows for easy integration with web-based development environments, such as Jupyter notebooks, for advanced data analysis. The system can ingest data from LoRaWAN sensors deployed using The Things Network (TTN). A cost analysis can support users’ planning and decision-making when deploying the system for different use cases. A proof-of-concept demonstration of the system was built with river and weather sensors deployed in a flood prone suburban watershed in the city of Charlottesville, Virginia.more » « less