skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-resolution Imaging Spectroscopy of a Tiny Sigmoidal Minifilament Eruption
Abstract Minifilament eruptions producing small jets and microflares have mostly been studied based on coronal observations at extreme-ultraviolet and X-ray wavelengths. This study presents chromospheric plasma diagnostics of a quiet-Sun minifilament of size ∼ 2″ × 5″ with a sigmoidal shape and an associated microflare observed on 2021 August 7 17:00 UT using high temporal and spatial resolution spectroscopy from the Fast Imaging Solar Spectrograph (FISS) and high-resolution magnetograms from the Near InfraRed Imaging Spectropolarimeter (NIRIS) installed on the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory. Using FISS Hαand Caii8542 Å line spectra at the time of the minifilament activation we determined a temperature of 8600 K and a nonthermal speed of 7.9 km s−1. During the eruption, the minifilament was no longer visible in the Caii8542 Å line, and only the Hαline spectra were used to find the temperature of the minifilament, which reached 1.2 × 104K and decreased afterward. We estimated thermal energy of 3.6 × 1024erg from the maximum temperature and kinetic energy of 2.6 × 1024erg from the rising speed (18 km s−1) of the minifilament. From the NIRIS magnetograms we found small-scale flux emergence and cancellation coincident with the minifilament eruption, and the magnetic energy change across the conjugate footpoints reaches 7.2 × 1025erg. Such spectroscopic diagnostics of the chromospheric minifilament complement earlier studies of minifilament eruptions made using coronal images.  more » « less
Award ID(s):
2309939 2108235 2229064
PAR ID:
10548067
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
974
Issue:
1
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 123
Size(s):
Article No. 123
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Solar filaments exist as stable structures for extended periods of time before many of them form the core of a coronal mass ejection (CME). We examine the properties of an erupting filament on 2017 May 29–30 with high-resolution Hei10830 Å and Hαspectra from the Dunn Solar Telescope, full-disk Dopplergrams of Hei10830 Å from the Chromospheric Telescope, and EUV and coronograph data from SDO and STEREO. Pre-eruption line-of-sight velocities from an inversion of Heiwith the HAZEL code exhibit coherent patches of 5 Mm extent that indicate counter-streaming and/or buoyant behavior. During the eruption, individual, aligned threads appear in the Heivelocity maps. The distribution of velocities evolves from Gaussian to strongly asymmetric. The maximal optical depth of Hei10830 Å decreased fromτ= 1.75 to 0.25, the temperature increased by 13 kK, and the average speed and width of the filament increased from 0 to 25 km s−1and 10 to 20 Mm, respectively. All data sources agree that the filament rose with an exponential acceleration reaching 7.4 m s−2that increased to a final velocity of 430 km s−1at 22:24 UT; a CME was associated with this filament eruption. The properties during the eruption favor a kink/torus instability, which requires the existence of a flux rope. We conclude that full-disk chromospheric Dopplergrams can be used to trace the initial phase of on-disk filament eruptions in real time, which might potentially be useful for modeling the source of any subsequent CMEs. 
    more » « less
  2. Abstract Recurrent chromospheric fan-shaped jets highlight the highly dynamic nature of the solar atmosphere. They have been named as “light walls” or “peacock jets” in high-resolution observations. In this study, we examined the underlying mechanisms responsible for the generation of recurrent chromospheric fan-shaped jets utilizing data from the Goode Solar Telescope at Big Bear Solar Observatory, along with data from the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI) on board the Solar Dynamics Observatory. These jets appear as dark elongated structures in Hαwing images, persist for over an hour, and are located in the intergranular lanes between a pair of same-polarity sunspots. Our analysis reveals that magnetic flux cancellation at the jet base plays a crucial role in their formation. HMI line-of-sight magnetograms show a gradual decrease in opposite-polarity fluxes spanning the sequence of jets in Hα−0.8 Å images, suggesting that recurrent magnetic reconnection, likely driven by recurrent miniature flux-rope eruptions that are built up and triggered by flux cancellation, powers these jets. Additionally, magnetic field extrapolations reveal a 3D magnetic null-point topology at the jet formation site ∼1.25 Mm height. Furthermore, we observed strong brightening in the AIA 304 Å channel above the neutral line. Based on our observations and extrapolation results, we propose that these recurrent chromospheric fan-shaped jets align with the minifilament eruption model previously proposed for coronal jets. Though our study focuses on fan-shaped jets in between same-polarity sunspots, a similar mechanism might be responsible for light-bridge-associated fan-shaped jets. 
    more » « less
  3. Abstract Sunspot light bridges (LBs) exhibit a wide range of short-lived phenomena in the chromosphere and transition region. In contrast, we use here data from the Multi-Application Solar Telescope (MAST), the Interface Region Imaging Spectrograph (IRIS), Hinode, the Atmospheric Imaging Assembly (AIA), and the Helioseismic and Magnetic Imager (HMI) to analyze the sustained heating over days in an LB in a regular sunspot. Chromospheric temperatures were retrieved from the MAST Caiiand IRIS Mgiilines by nonlocal thermodynamic equilibrium inversions. Line widths, Doppler shifts, and intensities were derived from the IRIS lines using Gaussian fits. Coronal temperatures were estimated through the differential emission measure, while the coronal magnetic field was obtained from an extrapolation of the HMI vector field. At the photosphere, the LB exhibits a granular morphology with field strengths of about 400 G and no significant electric currents. The sunspot does not fragment, and the LB remains stable for several days. The chromospheric temperature, IRIS line intensities and widths, and AIA 171 and 211 Å intensities are all enhanced in the LB with temperatures from 8000 K to 2.5 MK. Photospheric plasma motions remain small, while the chromosphere and transition region indicate predominantly redshifts of 5–20 km s−1with occasional supersonic downflows exceeding 100 km s−1. The excess thermal energy over the LB is about 3.2 × 1026erg and matches the radiative losses. It could be supplied by magnetic flux loss of the sunspot (7.5 × 1027erg), kinetic energy from the increase in the LB width (4 × 1028erg), or freefall of mass along the coronal loops (6.3 × 1026erg). 
    more » « less
  4. Abstract Minifilaments are widespread small-scale structures in the solar atmosphere. To better understand their formation and eruption mechanisms, we investigate the entire life of a sigmoidal minifilament located below a large quiescent filament observed by Big Bear Solar Observatory/Goode Solar Telescope on 2015 August 3. The Hαstructure initially appears as a group of arched threads, then transforms into two J-shaped arcades, and finally forms a sigmoidal shape. Solar Dynamics Observatory (SDO)/Atmospheric Imaging Assembly observations in 171 Å show that two coronal jets occur around the southern footpoint of the minifilament before the minifilament eruption. The minifilament eruption starts from the southern footpoint, then interacts with the overlying filament and fails. The aforementioned observational changes correspond to three episodes of flux cancellations observed by SDO/Helioseismic and Magnetic Imager. Unlike previous studies, the flux cancellation occurs between the polarity where the southern footpoint of the minifilament is rooted and an external polarity. We construct two magnetic field models before the eruption using the flux rope insertion method and find a hyperbolic flux tube above the flux cancellation site. The observation and modeling results suggest that the eruption is triggered by the external magnetic reconnection between the core field of the minifilament and the external fields due to flux cancellations. This study reveals a new triggering mechanism for minifilament eruptions and a new relationship between minifilament eruptions and coronal jets. 
    more » « less
  5. Abstract Full-disk spectroscopic observations of the solar corona are highly desired to forecast solar eruptions and their impact on planets and to uncover the origin of solar wind. In this paper, we introduce a new multislit design (five slits) to obtain extreme-ultraviolet (EUV) spectra simultaneously. The selected spectrometer wavelength range (184–197 Å) contains several bright EUV lines that can be used for spectral diagnostics. The multislit approach offers an unprecedented way to efficiently obtain the global spectral data but the ambiguity from different slits should be resolved. Using a numerical simulation of the global corona, we primarily concentrate on the optimization of the disambiguation process, with the objective of extracting decomposed spectral information of six primary lines. This subsequently facilitates a comprehensive series of plasma diagnostics, including density (Fexii195.12/186.89 Å), Doppler velocity (Fexii193.51 Å), line width (Fexii193.51 Å), and temperature diagnostics (Feviii185.21 Å, Fex184.54 Å, Fexi188.22 Å, and Fexii193.51 Å). We find a good agreement between the forward modeling parameters and the inverted results at the initial eruption stage of a coronal mass ejection, indicating the robustness of the decomposition method and its immense potential for global monitoring of the solar corona. 
    more » « less