skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exact Partitioning of High-order Models with a Novel Convex Tensor Cone Relaxation
In this paper we propose an algorithm for exact partitioning of high-order models. We define a general class of m-degree Homogeneous Polynomial Models, which subsumes several examples motivated from prior literature. Exact partitioning can be formulated as a tensor optimization problem. We relax this high-order combinatorial problem to a convex conic form problem. To this end, we carefully define the Carathéodory symmetric tensor cone, and show its convexity, and the convexity of its dual cone. This allows us to construct a primal-dual certificate to show that the solution of the convex relaxation is correct (equal to the unobserved true group assignment) and to analyze the statistical upper bound of exact partitioning.  more » « less
Award ID(s):
2134209
PAR ID:
10419631
Author(s) / Creator(s):
;
Editor(s):
Animashree Anandkumar
Date Published:
Journal Name:
Journal of machine learning research
Volume:
23
Issue:
284
ISSN:
1532-4435
Page Range / eLocation ID:
1−28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract High-order clustering aims to identify heterogeneous substructures in multiway datasets that arise commonly in neuroimaging, genomics, social network studies, etc. The non-convex and discontinuous nature of this problem pose significant challenges in both statistics and computation. In this paper, we propose a tensor block model and the computationally efficient methods, high-order Lloyd algorithm (HLloyd), and high-order spectral clustering (HSC), for high-order clustering. The convergence guarantees and statistical optimality are established for the proposed procedure under a mild sub-Gaussian noise assumption. Under the Gaussian tensor block model, we completely characterise the statistical-computational trade-off for achieving high-order exact clustering based on three different signal-to-noise ratio regimes. The analysis relies on new techniques of high-order spectral perturbation analysis and a ‘singular-value-gap-free’ error bound in tensor estimation, which are substantially different from the matrix spectral analyses in the literature. Finally, we show the merits of the proposed procedures via extensive experiments on both synthetic and real datasets. 
    more » « less
  2. null (Ed.)
    Probabilistic soft logic (PSL) is a framework for instantiating probabilistic graphical models (PGM) representing complex relational data. Weighted first-order logical statements are used as templates for creating potential functions which define the PGM density. Traditionally, PSL constrains weights to be non-negative to ensure maximum a posteriori (MAP) inference is a tractable convex optimization problem. We propose three novel approaches to extending PSL's expressivity to allow negative weights. Notably, we propose the use of Gödel logic for defining potentials from negatively weighted rules. This method improves upon prior work on this topic by preserving both the convexity and scale of the MAP inference problem. Moreover, we show where each of the five methods discussed in this paper overlap and where they most differ. All negative methods are implemented in PSL, and we introduce a tunable synthetic dataset designed to empirically compare the performance of predictions. 
    more » « less
  3. Many convex optimization problems can be represented through conic extended formulations (EFs) using only the small number of standard cones recognized by advanced conic solvers such as MOSEK 9. However, EFs are often significantly larger and more complex than equivalent conic natural formulations (NFs) represented using the much broader class of exotic cones. We define an exotic cone as a proper cone for which we can implement easily computable logarithmically homogeneous self-concordant barrier oracles for either the cone or its dual cone. Our goal is to establish whether a generic conic interior point solver supporting NFs can outperform an advanced conic solver specialized for EFs across a variety of applied problems. We introduce Hypatia, a highly configurable open-source conic primal-dual interior point solver written in Julia and accessible through JuMP. Hypatia has a generic interface for exotic cones, some of which we define here. For seven applied problems, we introduce NFs using these cones and construct EFs that are necessarily larger and more complex. Our computational experiments demonstrate the advantages, especially in terms of solve time and memory usage, of solving the NFs with Hypatia compared with solving the EFs with either Hypatia or MOSEK 9. 
    more » « less
  4. Learning the underlying equation from data is a fundamental problem in many disciplines. Recent advances rely on Neural Networks (NNs) but do not provide theoretical guarantees in obtaining the exact equations owing to the non-convexity of NNs. In this paper, we propose Convex Neural Symbolic Learning (CoNSoLe) to seek convexity under mild conditions. The main idea is to decompose the recovering process into two steps and convexify each step. In the first step of searching for right symbols, we convexify the deep Q-learning. The key is to maintain double convexity for both the negative Q-function and the negative reward function in each iteration, leading to provable convexity of the negative optimal Q function to learn the true symbol connections. Conditioned on the exact searching result, we construct a Locally Convex equation Learning (LoCaL) neural network to convexify the estimation of symbol coefficients. With such a design, we quantify a large region with strict convexity in the loss surface of LoCaL for commonly used physical functions. Finally, we demonstrate the superior performance of the CoNSoLe framework over the state-of-the-art on a diverse set of datasets. 
    more » « less
  5. Ozay, Necmiye; Balzano, Laura; Panagou, Dimitra; Abate, Alessandro (Ed.)
    Many optimal and robust control problems are nonconvex and potentially nonsmooth in their policy optimization forms. In this paper, we introduce the Extended Convex Lifting (ECL) framework, which reveals hidden convexity in classical optimal and robust control problems from a modern optimization perspective. Our ECL framework offers a bridge between nonconvex policy optimization and convex reformulations. Despite non-convexity and non-smoothness, the existence of an ECL for policy optimization not only reveals that the policy optimization problem is equivalent to a convex problem, but also certifies a class of first-order non-degenerate stationary points to be globally optimal. We further show that this ECL framework encompasses many benchmark control problems, including LQR, state-feedback and output-feedback H-infinity robust control. We believe that ECL will also be of independent interest for analyzing nonconvex problems beyond control. 
    more » « less