Abstract Multivariate functional data are becoming ubiquitous with advances in modern technology and are substantially more complex than univariate functional data. We propose and study a novel model for multivariate functional data where the component processes are subject to mutual time warping. That is, the component processes exhibit a similar shape but are subject to systematic phase variation across their time domains. To address this previously unconsidered mode of warping, we propose new registration methodology that is based on a shift‐warping model. Our method differs from all existing registration methods for functional data in a fundamental way. Namely, instead of focusing on the traditional approach to warping, where one aims to recover individual‐specific registration, we focus on shift registration across the components of a multivariate functional data vector on a population‐wide level. Our proposed estimates for these shifts are identifiable, enjoy parametric rates of convergence, and often have intuitive physical interpretations, all in contrast to traditional curve‐specific registration approaches. We demonstrate the implementation and interpretation of the proposed method by applying our methodology to the Zürich Longitudinal Growth data and study its finite sample properties in simulations.
more »
« less
Latent deformation models for multivariate functional data and time‐warping separability
Abstract Multivariate functional data present theoretical and practical complications that are not found in univariate functional data. One of these is a situation where the component functions of multivariate functional data are positive and are subject to mutual time warping. That is, the component processes exhibit a common shape but are subject to systematic phase variation across their domains in addition to subject‐specific time warping, where each subject has its own internal clock. This motivates a novel model for multivariate functional data that connect such mutual time warping to a latent‐deformation‐based framework by exploiting a novel time‐warping separability assumption. This separability assumption allows for meaningful interpretation and dimension reduction. The resulting latent deformation model is shown to be well suited to represent commonly encountered functional vector data. The proposed approach combines a random amplitude factor for each component with population‐based registration across the components of a multivariate functional data vector and includes a latent population function, which corresponds to a common underlying trajectory. We propose estimators for all components of the model, enabling implementation of the proposed data‐based representation for multivariate functional data and downstream analyses such as Fréchet regression. Rates of convergence are established when curves are fully observed or observed with measurement error. The usefulness of the model, interpretations, and practical aspects are illustrated in simulations and with application to multivariate human growth curves and multivariate environmental pollution data.
more »
« less
- PAR ID:
- 10419779
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Biometrics
- ISSN:
- 0006-341X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We derive and study a significance test for determining if a panel of functional time series is separable. In the context of this paper, separability means that the covariance structure factors into the product of two functions, one depending only on time and the other depending only on the coordinates of the panel. Separability is a property which can dramatically improve computational efficiency by substantially reducing model complexity. It is especially useful for functional data as it implies that the functional principal components are the same for each member of the panel. However such an assumption must be verified before proceeding with further inference. Our approach is based on functional norm differences and provides a test with well controlled size and high power. We establish our procedure quite generally, allowing one to test separability of autocovariances as well. In addition to an asymptotic justification, our methodology is validated by a simulation study. It is applied to functional panels of particulate pollution and stock market data.more » « less
-
Summary The paper is concerned with testing normality in samples of curves and error curves estimated from functional regression models. We propose a general paradigm based on the application of multivariate normality tests to vectors of functional principal components scores. We examine finite sample performance of a number of such tests and select the best performing tests. We apply them to several extensively used functional data sets and determine which can be treated as normal, possibly after a suitable transformation. We also offer practical guidance on software implementations of all tests we study and develop large sample justification for tests based on sample skewness and kurtosis of functional principal component scores.more » « less
-
Summary The covariance structure of multivariate functional data can be highly complex, especially if the multivariate dimension is large, making extensions of statistical methods for standard multivariate data to the functional data setting challenging. For example, Gaussian graphical models have recently been extended to the setting of multivariate functional data by applying multivariate methods to the coefficients of truncated basis expansions. However, compared with multivariate data, a key difficulty is that the covariance operator is compact and thus not invertible. This paper addresses the general problem of covariance modelling for multivariate functional data, and functional Gaussian graphical models in particular. As a first step, a new notion of separability for the covariance operator of multivariate functional data is proposed, termed partial separability, leading to a novel Karhunen–Loève-type expansion for such data. Next, the partial separability structure is shown to be particularly useful in providing a well-defined functional Gaussian graphical model that can be identified with a sequence of finite-dimensional graphical models, each of identical fixed dimension. This motivates a simple and efficient estimation procedure through application of the joint graphical lasso. Empirical performance of the proposed method for graphical model estimation is assessed through simulation and analysis of functional brain connectivity during a motor task.more » « less
-
Abstract A separable covariance model can describe the among-row and among-column correlations of a random matrix and permits likelihood-based inference with a very small sample size. However, if the assumption of separability is not met, data analysis with a separable model may misrepresent important dependence patterns in the data. As a compromise between separable and unstructured covariance estimation, we decompose a covariance matrix into a separable component and a complementary ‘core’ covariance matrix. This decomposition defines a new covariance matrix decomposition that makes use of the parsimony and interpretability of a separable covariance model, yet fully describes covariance matrices that are non-separable. This decomposition motivates a new type of shrinkage estimator, obtained by appropriately shrinking the core of the sample covariance matrix, that adapts to the degree of separability of the population covariance matrix.more » « less
An official website of the United States government
