skip to main content


Title: Fast Quantum State Discrimination with Nonlinear Positive Trace‐Preserving Channels
Abstract

Models of nonlinear quantum computation based on deterministic positive trace‐preserving (PTP) channels and evolution equations are investigated. The models are defined in any finite Hilbert space, but the main results are for dimension . For every normalizable linear or nonlinear positive map ϕ on bounded linear operatorsX, there is an associated normalized PTP channel . Normalized PTP channels include unitary mean field theories, such as the Gross–Pitaevskii equation for interacting bosons, as well as models of linear and nonlinear dissipation. They classify into four types, yielding three distinct forms of nonlinearity whose computational power are explored. In the qubit case, these channels support Bloch ball torsion and other distortions studied previously, where it has been shown that such nonlinearity can be used to increase the separation between a pair of close qubit states, suggesting an exponential speedup for state discrimination. Building on this idea, the authors argue that this operation can be made robust to noise by using dissipation to induce a bifurcation to a novel phase where a pair of attracting fixed points create an intrinsically fault‐tolerant nonlinear state discriminator.

 
more » « less
NSF-PAR ID:
10419890
Author(s) / Creator(s):
 
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Quantum Technologies
Volume:
6
Issue:
6
ISSN:
2511-9044
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We study the distribution over measurement outcomes of noisy random quantum circuits in the regime of low fidelity, which corresponds to the setting where the computation experiences at least one gate-level error with probability close to one. We model noise by adding a pair of weak, unital, single-qubit noise channels after each two-qubit gate, and we show that for typical random circuit instances, correlations between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the corresponding noiseless output distribution$$p_{\text {ideal}}$$pidealshrink exponentially with the expected number of gate-level errors. Specifically, the linear cross-entropy benchmarkFthat measures this correlation behaves as$$F=\text {exp}(-2s\epsilon \pm O(s\epsilon ^2))$$F=exp(-2sϵ±O(sϵ2)), where$$\epsilon $$ϵis the probability of error per circuit location andsis the number of two-qubit gates. Furthermore, if the noise is incoherent—for example, depolarizing or dephasing noise—the total variation distance between the noisy output distribution$$p_{\text {noisy}}$$pnoisyand the uniform distribution$$p_{\text {unif}}$$punifdecays at precisely the same rate. Consequently, the noisy output distribution can be approximated as$$p_{\text {noisy}}\approx Fp_{\text {ideal}}+ (1-F)p_{\text {unif}}$$pnoisyFpideal+(1-F)punif. In other words, although at least one local error occurs with probability$$1-F$$1-F, the errors are scrambled by the random quantum circuit and can be treated as global white noise, contributing completely uniform output. Importantly, we upper bound the average total variation error in this approximation by$$O(F\epsilon \sqrt{s})$$O(Fϵs). Thus, the “white-noise approximation” is meaningful when$$\epsilon \sqrt{s} \ll 1$$ϵs1, a quadratically weaker condition than the$$\epsilon s\ll 1$$ϵs1requirement to maintain high fidelity. The bound applies if the circuit size satisfies$$s \ge \Omega (n\log (n))$$sΩ(nlog(n)), which corresponds to onlylogarithmic depthcircuits, and if, additionally, the inverse error rate satisfies$$\epsilon ^{-1} \ge {\tilde{\Omega }}(n)$$ϵ-1Ω~(n), which is needed to ensure errors are scrambled faster thanFdecays. The white-noise approximation is useful for salvaging the signal from a noisy quantum computation; for example, it was an underlying assumption in complexity-theoretic arguments that noisy random quantum circuits cannot be efficiently sampled classically, even when the fidelity is low. Our method is based on a map from second-moment quantities in random quantum circuits to expectation values of certain stochastic processes for which we compute upper and lower bounds.

     
    more » « less
  2. null (Ed.)
    Nonlinear differential equations model diverse phenomena but are notoriously difficult to solve. While there has been extensive previous work on efficient quantum algorithms for linear differential equations, the linearity of quantum mechanics has limited analogous progress for the nonlinear case. Despite this obstacle, we develop a quantum algorithm for dissipative quadratic n-dimensional ordinary differential equations. Assuming R < 1 , where R is a parameter characterizing the ratio of the nonlinearity and forcing to the linear dissipation, this algorithm has complexity T 2 q   poly ( log ⁡ T , log ⁡ n , log ⁡ 1 / ϵ ) / ϵ , where T is the evolution time, ϵ is the allowed error, and q measures decay of the solution. This is an exponential improvement over the best previous quantum algorithms, whose complexity is exponential in T. While exponential decay precludes efficiency, driven equations can avoid this issue despite the presence of dissipation. Our algorithm uses the method of Carleman linearization, for which we give a convergence theorem. This method maps a system of nonlinear differential equations to an infinite-dimensional system of linear differential equations, which we discretize, truncate, and solve using the forward Euler method and the quantum linear system algorithm. We also provide a lower bound on the worst-case complexity of quantum algorithms for general quadratic differential equations, showing that the problem is intractable for R ≥ 2 . Finally, we discuss potential applications, showing that the R < 1 condition can be satisfied in realistic epidemiological models and giving numerical evidence that the method may describe a model of fluid dynamics even for larger values of R. 
    more » « less
  3. Abstract

    The ability to cool quantum gases into the quantum degenerate realm has opened up possibilities for an extreme level of quantum-state control. In this paper, we investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose–Einstein condensate by the periodic modulation of the two-bodys-wave scattering length. This shows a capability to selectively amplify quantum fluctuations with a predetermined momentum, where the momentum value can be spectroscopically tuned. A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal in nonlinear optics. For this reason, it may be anticipated that the evolution will generate a ‘squeezed’ matter-wave state in the quasiparticle mode on resonance with the modulation frequency. Our model and analysis is motivated by a recent experiment by Clarket althat observed a time-of-flight pattern similar to an exploding firework (Clarket al2017Nature551356–9). Since the drive is a highly coherent process, we interpret the observed firework patterns as arising from a monotonic growth in the two-body correlation amplitude, so that the jets should contain correlated atom pairs with nearly equal and opposite momenta. We propose a potential future experiment based on applying Ramsey interferometry to experimentally probe these pair correlations.

     
    more » « less
  4. Abstract

    Nonlinear qubit master equations have recently been shown to exhibit rich dynamical phenomena such as period doubling, Hopf bifurcation, and strange attractors usually associated with classical nonlinear systems. Here we investigate nonlinear qubit models that support tunable Lorenz attractors. A Lorenz qubit could be realized experimentally by combining qubit torsion, generated by real or simulated mean field dynamics, with linear amplification and dissipation. This would extend engineered Lorenz systems to the quantum regime, allowing for their direct experimental study and possible application to quantum information processing.

     
    more » « less
  5. Abstract

    We study tidal dissipation in hot Jupiter host stars due to the nonlinear damping of tidally driveng-modes, extending the calculations of Essick & Weinberg to a wide variety of stellar host types. This process causes the planet’s orbit to decay and has potentially important consequences for the evolution and fate of hot Jupiters. Previous studies either only accounted for linear dissipation processes or assumed that the resonantly excited primary mode becomes strongly nonlinear and breaks as it approaches the stellar center. However, the great majority of hot Jupiter systems are in the weakly nonlinear regime in which the primary mode does not break but instead excites a sea of secondary modes via three-mode interactions. We simulate these nonlinear interactions and calculate the net mode dissipation for stars that range in mass from 0.5MM≤ 2.0Mand in age from the early main sequence to the subgiant phase. We find that the nonlinearly excited secondary modes can enhance the tidal dissipation by orders of magnitude compared to linear dissipation processes. For the stars withM≲ 1.0Mof nearly any age, we find that the orbital decay time is ≲100 Myr for orbital periodsPorb≲ 1 day. ForM≳ 1.2M, the orbital decay time only becomes short on the subgiant branch, where it can be ≲10 Myr forPorb≲ 2 days and result in significant transit time shifts. We discuss these results in the context of known hot Jupiter systems and examine the prospects for detecting their orbital decay with transit timing measurements.

     
    more » « less