skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Every Steiner Triple System Contains Almost Spanning $d$-Ary Hypertree
In this paper we make a partial progress on the following conjecture: for every $$\mu>0$$ and large enough $$n$$, every Steiner triple system $$S$$ on at least $$(1+\mu)n$$ vertices contains every hypertree $$T$$ on $$n$$ vertices. We prove that the conjecture holds if $$T$$ is a perfect $$d$$-ary hypertree.  more » « less
Award ID(s):
1764385
PAR ID:
10419936
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
The Electronic Journal of Combinatorics
Volume:
29
Issue:
3
ISSN:
1077-8926
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Sarnak’s Möbius disjointness conjecture asserts that for any zero entropy dynamical system $(X,T)$ , $$({1}/{N})\! \sum _{n=1}^{N}\! f(T^{n} x) \mu (n)= o(1)$$ for every $$f\in \mathcal {C}(X)$$ and every $$x\in X$$ . We construct examples showing that this $o(1)$ can go to zero arbitrarily slowly. In fact, our methods yield a more general result, where in lieu of $$\mu (n)$$ , one can put any bounded sequence $$a_{n}$$ such that the Cesàro mean of the corresponding sequence of absolute values does not tend to zero. Moreover, in our construction, the choice of x depends on the sequence $$a_{n}$$ but $(X,T)$ does not. 
    more » « less
  2. One of the most intruguing conjectures in extremal graph theory is the conjecture of Erdős and Sós from 1962, which asserts that every $$n$$-vertex graph with more than $$\frac{k-1}{2}n$$ edges contains any $$k$$-edge tree as a subgraph. Kalai proposed a generalization of this conjecture to hypergraphs. To explain the generalization, we need to define the concept of a tight tree in an $$r$$-uniform hypergraph, i.e., a hypergraph where each edge contains $$r$$ vertices. A tight tree is an $$r$$-uniform hypergraph such that there is an ordering $$v_1,\ldots,v_n$$ of its its vertices with the following property: the vertices $$v_1,\ldots,v_r$$ form an edge and for every $i>r$, there is a single edge $$e$$ containing the vertex $$v_i$$ and $r-1$ of the vertices $$v_1,\ldots,v_{i-1}$$, and $$e\setminus\{v_i\}$$ is a subset of one of the edges consisting only of vertices from $$v_1,\ldots,v_{i-1}$$. The conjecture of Kalai asserts that every $$n$$-vertex $$r$$-uniform hypergraph with more than $$\frac{k-1}{r}\binom{n}{r-1}$$ edges contains every $$k$$-edge tight tree as a subhypergraph. The recent breakthrough results on the existence of combinatorial designs by Keevash and by Glock, Kühn, Lo and Osthus show that this conjecture, if true, would be tight for infinitely many values of $$n$$ for every $$r$$ and $$k$$.The article deals with the special case of the conjecture when the sought tight tree is a path, i.e., the edges are the $$r$$-tuples of consecutive vertices in the above ordering. The case $r=2$ is the famous Erdős-Gallai theorem on the existence of paths in graphs. The case $r=3$ and $k=4$ follows from an earlier work of the authors on the conjecture of Kalai. The main result of the article is the first non-trivial upper bound valid for all $$r$$ and $$k$$. The proof is based on techniques developed for a closely related problem where a hypergraph comes with a geometric structure: the vertices are points in the plane in a strictly convex position and the sought path has to zigzag beetwen the vertices. 
    more » « less
  3. Both Cuckler and Yuster independently conjectured that when $$n$$ is an odd positive multiple of $$3$$ every regular tournament on $$n$$ vertices contains a collection of $n/3$$ vertex-disjoint copies of the cyclic triangle. Soon after, Keevash \& Sudakov proved that if $$G$$ is an orientation of a graph on $$n$$ vertices in which every vertex has both indegree and outdegree at least $(1/2 - o(1))n$, then there exists a collection of vertex-disjoint cyclic triangles that covers all but at most $$3$$ vertices. In this paper, we resolve the conjecture of Cuckler and Yuster for sufficiently large $$n$$. 
    more » « less
  4. An efficient implicit representation of an n-vertex graph G in a family F of graphs assigns to each vertex of G a binary code of length O(log n) so that the adjacency between every pair of vertices can be determined only as a function of their codes. This function can depend on the family but not on the individual graph. Every family of graphs admitting such a representation contains at most 2^O(n log(n)) graphs on n vertices, and thus has at most factorial speed of growth. The Implicit Graph Conjecture states that, conversely, every hereditary graph family with at most factorial speed of growth admits an efficient implicit representation. We refute this conjecture by establishing the existence of hereditary graph families with factorial speed of growth that require codes of length n^Ω(1). 
    more » « less
  5. null (Ed.)
    Abstract We investigate a covering problem in 3-uniform hypergraphs (3-graphs): Given a 3-graph F , what is c 1 ( n , F ), the least integer d such that if G is an n -vertex 3-graph with minimum vertex-degree $$\delta_1(G)>d$$ then every vertex of G is contained in a copy of F in G ? We asymptotically determine c 1 ( n , F ) when F is the generalized triangle $$K_4^{(3)-}$$ , and we give close to optimal bounds in the case where F is the tetrahedron $$K_4^{(3)}$$ (the complete 3-graph on 4 vertices). This latter problem turns out to be a special instance of the following problem for graphs: Given an n -vertex graph G with $m> n^2/4$ edges, what is the largest t such that some vertex in G must be contained in t triangles? We give upper bound constructions for this problem that we conjecture are asymptotically tight. We prove our conjecture for tripartite graphs, and use flag algebra computations to give some evidence of its truth in the general case. 
    more » « less