skip to main content


Title: Effect of Oleylamine on the Surface Chemistry, Morphology, Electronic Structure, and Magnetic Properties of Cobalt Ferrite Nanoparticles
The influence of oleylamine (OLA) concentration on the crystallography, morphology, surface chemistry, chemical bonding, and magnetic properties of solvothermal synthesized CoFe2O4 (CFO) nanoparticles (NPs) has been thoroughly investigated. Varying OLA concentration (0.01–0.1 M) resulted in the formation of cubic spinel-structured CoFe2O4 NPs in the size-range of 20–14 (±1) nm. The Fourier transform spectroscopic analyses performed confirmed the OLA binding to the CFO NPs. The thermogravimetric measurements revealed monolayer and multilayer coating of OLA on CFO NPs, which were further supported by the small-angle X-ray scattering measurements. The magnetic measurements indicated that the maximum saturation (MS) and remanent (Mr) magnetization decreased with increasing OLA concentration. The ratio of maximum dipolar field (Hdip), coercivity (HC), and exchanged bias field (Hex) (at 10 K) to the average crystallite size (Dxrd), i.e., (Hdip/Dxrd), (HC/Dxrd), and (Hex/Dxrd), increased linearly with OLA concentration, indicating that OLA concurrently controls the particle size and interparticle interaction among the CFO NPs. The results and analyses demonstrate that the OLA-mediated synthesis allowed for modification of the structural and magnetic properties of CFO NPs, which could readily find potential application in electronics and biomedicine.  more » « less
Award ID(s):
1827745
NSF-PAR ID:
10420035
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Nanomaterials
Volume:
12
Issue:
17
ISSN:
2079-4991
Page Range / eLocation ID:
3015
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Epitaxial thin films of cobalt ferrite (CoFe2O4) are grown on two isostructural substrates, (001)-oriented MgGa2O4 and ZnGa2O4, using pulsed laser deposition. The substrates have a lattice mismatch of 1.26% and 0.70% with bulk CoFe2O4 (CFO) crystal. We have systematically investigated the structural and magnetic properties of the epitaxial CFO films on these substrates. X-ray diffraction and transmission electron microscopy result analysis reveal that the films deposited on spinel ZnGa2O4 are essentially free of defects and are under a small compressive strain, while films on MgGa2O4 show partial strain relaxation along with defect formation. Room temperature magnetization data indicate that CFO grown on ZnGa2O4 substrates have a bulk-like saturation magnetization of 420 emu/cc and a uniaxial substrate-induced anisotropy value of −22.9× 106 erg/cm3 with an anisotropy field as low as 60 kOe.

     
    more » « less
  2. ConspectusGold nanoparticles (AuNPs) exhibit unique size- and shape-dependent properties not obtainable at the macroscale. Gold nanorods (AuNRs), with their morphology-dependent optical properties, ability to convert light to heat, and high surface-to-volume ratios, are of great interest for biosensing, medicine, and catalysis. While the gold core provides many fascinating properties, this Account focuses on AuNP soft surface coatings, which govern the interactions of nanoparticles with the local environments. Postmodification of AuNP surface chemistry can greatly alter NP colloidal stability, nano-bio interactions, and functionality. Polyelectrolyte coatings provide controllable surface-coating thickness and charge, which impact the composition of the acquired corona in biological settings. Covalent modification, in which covalently bound ligands replace the original capping layer, is often performed with thiols and disulfides due to their ability to replace native coatings. N-heterocyclic carbenes and looped peptides expand the possible functionalities of the ligand layer.The characterization of surface ligands bound to AuNPs, in terms of ligand density and dynamics, remains a challenge. Nuclear magnetic resonance (NMR) spectroscopy is a powerful tool for understanding molecular structures and dynamics. Our recent NMR work on AuNPs demonstrated that NMR data were obtainable for ligands on NPs with diameters up to 25 nm for the first time. This was facilitated by the strong proton NMR signals of the trimethylammonium headgroup, which are present in a distinct regime from other ligand protons’ signals. Ligand density analyses showed that the smallest AuNPs (below 4 nm) had the largest ligand densities, yet spin–spin T2 measurements revealed that these smallest NPs also had the most mobile ligand headgroups. Molecular dynamics simulations were able to reconcile these seemingly contradictory results.While NMR spectroscopy provides ligand information averaged over many NPs, the ligand distribution on individual particles’ surfaces must also be probed to fully understand the surface coating. Taking advantage of improvements in electron energy loss spectroscopy (EELS) detectors employed with scanning transmission electron microscopy (STEM), a single-layer graphene substrate was used to calibrate the carbon K-edge EELS signal, allowing quantitative imaging of the carbon atom densities on AuNRs with sub-nanometer spatial resolution. In collaboration with others, we revealed that the mean value for surfactant-bilayer-coated AuNRs had 10–30% reduced ligand density at the ends of the rods compared to the sides, confirming prior indirect evidence for spatially distinct ligand densities.Recent work has found that surface ligands on nanoparticles can, somewhat surprisingly, enhance the selectivity and efficiency of the electrocatalytic reduction of CO2 by controlling access to the active site, tuning its electronic and chemical environment, or denying entry to impurities that poison the nanoparticle surface to facilitate reduction. Looking to the future, while NMR and EELS are powerful and complementary techniques for investigating surface coatings on AuNPs, the frontier of this field includes the development of methods to probe the surface ligands of individual NPs in a high-throughput manner, to monitor nano-bio interactions within complex matrices, and to study structure–property relationships of AuNPs in biological systems. 
    more » « less
  3. SUMMARY Anisotropy of remanent magnetization and magnetic susceptibility are highly sensitive and important indicators of geological processes which are largely controlled by mineralogical parameters of the ferrimagnetic fraction in rocks. To provide new physical insight into the complex interaction between magnetization structure, shape, and crystallographic relations, we here analyse ‘slice-and-view’ focused-ion-beam (FIB) nano-tomography data with micromagnetic modelling and single crystal hysteresis measurements. The data sets consist of 68 magnetite inclusions in orthopyroxene (Mg60) and 234 magnetite inclusions in plagioclase (An63) were obtained on mineral separates from the Rustenburg Layered Suite of the Bushveld Intrusive Complex, South Africa. Electron backscatter diffraction was used to determine the orientation of the magnetite inclusions relative to the crystallographic directions of their silicate hosts. Hysteresis loops were calculated using the finite-element micromagnetics code MERRILL for each particle in 20 equidistributed field directions and compared with corresponding hysteresis loops measured using a vibrating sample magnetometer (VSM) on silicate mineral separates from the same samples. In plagioclase the ratio of remanent magnetization to saturation magnetization (Mrs/Ms) for both model and measurement agree within 1.0 per cent, whereas the coercivity (Hc) of the average modelled curve is 20 mT lower than the measured value of 60 mT indicating the presence of additional sources of high coercivity in the bulk sample. The VSM hysteresis measurements of the orthopyroxene were dominated by multidomain (MD) magnetite, whereas the FIB location was chosen to avoid MD particles and thus contains only particles with diameters <500 nm that are considered to be the most important carriers of palaeomagnetic remanence. To correct for this sampling bias, measured MD hysteresis loops from synthetic and natural magnetites were combined with the average hysteresis loop from the MERRILL models of the FIB region. The result shows that while the modelled small-particle fraction only explains 6 per cent of the best fit to the measured VSM hysteresis loop, it contributes 28 per cent of the remanent magnetization. The modelled direction of maximal Mrs/Ms in plagioclase is subparallel to [001]plag, whereas Hc does not show a strong orientation dependence. The easy axis of magnetic remanence is in the direction of the magnetite population normal to (150)plag and the maximum calculated susceptibility (χ*) is parallel to [010]plag. For orthopyroxene, the maximum Mrs/Ms, maximum χ* and the easy axis of remanence is strongly correlated to the elongation axes of magnetite in the [001]opx direction. The maximum Hc is oriented along [100]opx and parallel to the minimum χ*, which reflects larger vortex nucleation fields when the applied field direction approaches the short axis. The maximum Hc is therefore orthogonal to the maximum Mrs/Ms, controlled by axis-aligned metastable single-domain states at zero field. The results emphasize that the nature of anisotropy in natural magnetite does not just depend on the particle orientations, but on the presence of different stable and metastable domain states, and the mechanism of magnetic switching between them. Magnetic modelling of natural magnetic particles is therefore a vital method to extract and process anisotropic hysteresis parameters directly from the primary remanence carriers. 
    more » « less
  4. ABSTRACT We explore unsupervised machine learning for galaxy morphology analyses using a combination of feature extraction with a vector-quantized variational autoencoder (VQ-VAE) and hierarchical clustering (HC). We propose a new methodology that includes: (1) consideration of the clustering performance simultaneously when learning features from images; (2) allowing for various distance thresholds within the HC algorithm; (3) using the galaxy orientation to determine the number of clusters. This set-up provides 27 clusters created with this unsupervised learning that we show are well separated based on galaxy shape and structure (e.g. Sérsic index, concentration, asymmetry, Gini coefficient). These resulting clusters also correlate well with physical properties such as the colour–magnitude diagram, and span the range of scaling relations such as mass versus size amongst the different machine-defined clusters. When we merge these multiple clusters into two large preliminary clusters to provide a binary classification, an accuracy of $\sim 87{{\ \rm per\ cent}}$ is reached using an imbalanced data set, matching real galaxy distributions, which includes 22.7 per cent early-type galaxies and 77.3 per cent late-type galaxies. Comparing the given clusters with classic Hubble types (ellipticals, lenticulars, early spirals, late spirals, and irregulars), we show that there is an intrinsic vagueness in visual classification systems, in particular galaxies with transitional features such as lenticulars and early spirals. Based on this, the main result in this work is not how well our unsupervised method matches visual classifications and physical properties, but that the method provides an independent classification that may be more physically meaningful than any visually based ones. 
    more » « less
  5. Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe 2 O 4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe 2 O 4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe 2 O 4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH) 2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe 2 O 4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe 2 O 4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe 2 O 4 HNCs are discussed herein. 
    more » « less