skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Dual imaging agent for magnetic particle imaging and computed tomography
Magnetic particle imaging (MPI) is a novel biomedical imaging modality that allows non-invasive, tomographic, and quantitative tracking of the distribution of superparamagnetic iron oxide nanoparticle (SPION) tracers. While MPI possesses high sensitivity, detecting nanograms of iron, it does not provide anatomical information. Computed tomography (CT) is a widely used biomedical imaging modality that yields anatomical information at high resolution. A multimodal imaging agent combining the benefits of MPI and CT imaging would be of interest. Here we combine MPI-tailored SPIONs with CT-contrast hafnium oxide (hafnia) nanoparticles using flash nanoprecipitation to obtain dual-imaging MPI/CT agents. Co-encapsulation of iron oxide and hafnia in the composite nanoparticles was confirmed via transmission electron microscopy and elemental mapping. Equilibrium and dynamic magnetic characterization show a reduction in effective magnetic diameter and changes in dynamic magnetic susceptibility spectra at high oscillating field frequencies, suggesting magnetic interactions within the composite dual imaging tracers. The MPI performance of the dual imaging agent was evaluated and compared to the commercial tracer ferucarbotran. The dual-imaging agent has MPI sensitivity that is ∼3× better than this commercial tracer. However, worsening of MPI resolution was observed in the composite tracer when compared to individually coated SPIONs. This worsening resolution could result from magnetic dipolar interactions within the composite dual imaging tracer. The CT performance of the dual imaging agent was evaluated in a pre-clinical animal scanner and a clinical scanner, revealing better contrast compared to a commercial iodine-based contrast agent. We demonstrate that the dual imaging agent can be differentiated from the commercial iodine contrast agent using dual energy CT (DECT) imaging. Furthermore, the dual imaging agent displayed energy-dependent CT contrast arising from the combination of SPION and hafnia, making it potentially suitable for virtual monochromatic imaging of the contrast agent distribution using DECT.  more » « less
Award ID(s):
1832733
PAR ID:
10420140
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
5
Issue:
11
ISSN:
2516-0230
Page Range / eLocation ID:
3018 to 3032
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Magnetic particle imaging (MPI) is an emerging noninvasive molecular imaging modality with high sensitivity and specificity, exceptional linear quantitative ability, and potential for successful applications in clinical settings. Computed tomography (CT) is typically combined with the MPI image to obtain more anatomical information. Herein, a deep learning‐based approach for MPI‐CT image segmentation is presented. The dataset utilized in training the proposed deep learning model is obtained from a transgenic mouse model of breast cancer following administration of indocyanine green (ICG)‐conjugated superparamagnetic iron oxide nanoworms (NWs‐ICG) as the tracer. The NWs‐ICG particles progressively accumulate in tumors due to the enhanced permeability and retention (EPR) effect. The proposed deep learning model exploits the advantages of the multihead attention mechanism and the U‐Net model to perform segmentation on the MPI‐CT images, showing superb results. In addition, the model is characterized with a different number of attention heads to explore the optimal number for our custom MPI‐CT dataset. 
    more » « less
  2. Abstract Magnetic particle imaging (MPI) is a tracer-based tomographic imaging technique utilized in applications such as lung perfusion imaging, cancer diagnosis, stem cell tracking, etc. The goal of translating MPI to clinical use has prompted studies on further improving the spatial-temporal resolutions of MPI through various methods, including image reconstruction algorithm, scanning trajectory design, magnetic field profile design, and tracer design. Iron oxide magnetic nanoparticles (MNPs) are favored for MPI and magnetic resonance imaging (MRI) over other materials due to their high biocompatibility, low cost, and ease of preparation and surface modification. For core–shell MNPs, the tracers’ magnetic core size and non-magnetic coating layer characteristics can significantly affect MPI signals through dynamic magnetization relaxations. Most works to date have assumed an ensemble of MNP tracers with identical sizes, ignoring that artificially synthesized MNPs typically follow a log-normal size distribution, which can deviate theoretical results from experimental data. In this work, we first characterize the size distributions of four commercially available iron oxide MNP products and then model the collective magnetic responses of these MNPs for MPI applications. For an ensemble of MNP tracers with size standard deviations ofσ, we applied a stochastic Langevin model to study the effect of size distribution on MPI imaging performance. Under an alternating magnetic field (AMF), i.e., the excitation field in MPI, we collected the time domain dynamic magnetizations (M-t curves), magnetization-field hysteresis loops (M-H curves), point-spread functions (PSFs), and higher harmonics from these MNP tracers. The intrinsic MPI spatial resolution, which is related to the full width at half maximum (FWHM) of the PSF profile, along with the higher harmonics, serve as metrics to provide insights into how the size distribution of MNP tracers affects MPI performance. 
    more » « less
  3. Abstract Rapid and accurate assessment of conditions characterized by altered blood flow, cardiac blood pooling, or internal bleeding is crucial for diagnosing and treating various clinical conditions. While widely used imaging modalities such as magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound offer unique diagnostic advantages, they fall short for specific indications due to limited penetration depth and prolonged acquisition times. Magnetic particle imaging (MPI), an emerging tracer‐based technique, holds promise for blood circulation assessments, potentially overcoming existing limitations with reduction in background signals and high temporal and spatial resolution, below the millimeter scale. Successful imaging of blood pooling and impaired flow necessitates tracers with diverse circulation half‐lives optimized for MPI signal generation. Recent MPI tracers show potential in imaging cardiovascular complications, vascular perforations, ischemia, and stroke. The impressive temporal resolution and penetration depth also position MPI as an excellent modality for real‐time vessel perfusion imaging via functional MPI (fMPI). This review summarizes advancements in optimized MPI tracers for imaging blood circulation and analyzes the current state of pre‐clinical applications. This work discusses perspectives on standardization required to transition MPI from a research endeavor to clinical implementation and explore additional clinical indications that may benefit from the unique capabilities of MPI. 
    more » « less
  4. Abstract We have investigated the efficacy of superparamagnetic iron oxide nanoparticles (SPIONs) as positive T1contrast agents for low-field magnetic resonance imaging (MRI) at 64 millitesla (mT). Iron oxide-based agents, such as the FDA-approved ferumoxytol, were measured using a variety of techniques to evaluate T1contrast at 64 mT. Additionally, we characterized monodispersed carboxylic acid-coated SPIONs with a range of diameters (4.9–15.7 nm) in order to understand size-dependent properties of T1contrast at low-field. MRI contrast properties were measured using 64 mT MRI, magnetometry, and nuclear magnetic resonance dispersion (NMRD). We also measured MRI contrast at 3 T to provide comparison to a standard clinical field strength. SPIONs have the capacity to perform well as T1contrast agents at 64 mT, with measured longitudinal relaxivity (r1) values of up to 67 L mmol−1 s−1, more than an order of magnitude higher than corresponding r1values at 3 T. The particles exhibit size-dependent longitudinal relaxivities and outperform a commercial Gd-based agent (gadobenate dimeglumine) by more than eight-fold at physiological temperatures. Additionally, we characterize the ratio of transverse to longitudinal relaxivity, r2/r1and find that it is ~ 1 for the SPION based agents at 64 mT, indicating a favorable balance of relaxivities for T1-weighted contrast imaging. We also correlate the magnetic and structural properties of the particles with models of nanoparticle relaxivity to understand generation of T1contrast. These experiments show that SPIONs, at low fields being targeted for point-of-care low-field MRI systems, have a unique combination of magnetic and structural properties that produce large T1relaxivities. 
    more » « less
  5. Abstract Microrobots hold immense potential in biomedical applications, including drug delivery, disease diagnostics, and minimally invasive surgeries. However, two key challenges hinder their clinical translation: achieving scalable and precision fabrication, and enabling non‐invasive imaging and tracking within deep biological tissues. Magnetic particle imaging (MPI), a cutting‐edge imaging modality, addresses these challenges by detecting the magnetization of nanoparticles and visualizing superparamagnetic nanoparticles (SPIONs) with sub‐millimeter resolution, free from interference by biological tissues. This capability makes MPI an ideal tool for tracking magnetic microrobots in deep tissue environments. In this study, “TriMag” microrobots are introduced: 3D‐printed microrobots with three integrated magnetic functionalities—magnetic actuation, magnetic particle imaging, and magnetic hyperthermia. The TriMag microrobots are fabricated using an innovative method that combines two‐photon lithography for 3D printing biocompatible hydrogel structures with in situ chemical reactions to embed the hydrogel scaffold with Fe3O4nanoparticles for good MPI contrast and CoFe2O4nanoparticles for efficient magnetothermal heating. This approach enables scalable, precise fabrication of helical magnetic hydrogel microrobots. The resulting TriMag microrobots, with the synergistic effects of Fe3O4and CoFe2O4nanoparticles, demonstrate efficient magnetic actuation for controlled movement, precise imaging via MPI for imaging and tracking in biological fluid and organs, including porcine eye and mouse stomach, and magnetothermal heating for tumor ablation in a mouse model. By combining these capabilities, the fabrication and imaging approach provides a robust platform for non‐invasive monitoring and manipulation of microrobots for transformative applications in medical treatment and biological research. 
    more » « less