skip to main content

Title: Exploring microstructures in lower mantle mineral assemblages with synchrotron x-rays
Understanding dynamics across phase transformations and the spatial distribution of minerals in the lower mantle is crucial for a comprehensive model of the evolution of the Earth’s interior. Using the multigrain crystallography technique (MGC) with synchrotron x-rays at pressures of 30 GPa in a laser-heated diamond anvil cell to study the formation of bridgmanite [(Mg,Fe)SiO 3 ] and ferropericlase [(Mg,Fe)O], we report an interconnected network of a smaller grained ferropericlase, a configuration that has been implicated in slab stagnation and plume deflection in the upper part of the lower mantle. Furthermore, we isolated individual crystal orientations with grain-scale resolution, provide estimates on stress evolutions on the grain scale, and report {110} twinning in an iron-depleted bridgmanite, a mechanism that appears to aid stress relaxation during grain growth and likely contributes to the lack of any appreciable seismic anisotropy in the upper portion of the lower mantle.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Science Advances
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. SUMMARY We derive exact expressions for the thermal expansivity, heat capacity and bulk modulus for assemblages with arbitrarily large numbers of components and phases, including the influence of phase transformations and chemical exchange. We illustrate results in simple two-component, two-phase systems, including Mg–Fe olivine-wadsleyite and Ca–Mg clinopyroxene-orthopyroxene and for a multicompontent model of mantle composition in the form of pyrolite. For the latter we show results for the thermal expansivity and heat capacity over the entire mantle pressure–temperature regime to 40 GPa, or a depth of 1000 km. From the thermal expansivity, we derive a new expression for the phase buoyancy parameter that is valid for arbitrarily large numbers of phases and components and which is defined at every point in pressure–temperature space. Results reveal regions of the mantle where the magnitude of the phase buoyancy parameter is larger in magnitude than for those phase transitions that are most commonly included in mantle convection simulations. These regions include the wadsleyite to garnet and ferropericlase transition, which is encountered along hot isentropes (e.g. 2000 K potential temperature) in the transition zone, and the ferropericlase and stishovite to bridgmanite transition, which is encountered along cold isentropes (e.g. 1000 K potential temperature) in the shallow lower mantle. We also show the bulk modulus along a typical mantle isentrope and relate it to the Bullen inhomogeneity parameter. All results are computed with our code HeFESTo, updates and improvements to which we discuss, including the implementation of the exact expressions for the thermal expansivity, heat capacity and bulk modulus, generalization to allow for pressure dependence of non-ideal solution parameters and an improved numerical scheme for minimizing the Gibbs free energy. Finally, we present the results of a new global inversion of parameters updated to incorporate more recent results from experiment and first principles theory, as well as a new phase (nal phase), and new species: Na-majorite and the NaAlO2 end-member of ferropericlase. 
    more » « less
  2. Abstract

    At nearly 2,900‐km depth, the core‐mantle boundary (CMB) represents the largest density increase within the Earth going from a rocky mantle into an iron‐alloy core. This compositional change sets up steep temperature gradients, which in turn influences mantle flow, structure, and seismic velocities. Here we resolve the thermodynamic parameters of (Mg,Fe)O and compute the melting phase relations of the MgO‐FeO binary system at CMB conditions. Based on this phase diagram, we revisit iron infiltration into solid ferropericlase along the CMB by morphological instability and find that the length scale of infiltration is comparable with the high electrical conductivity layer inferred from core nutations. We also compute the (Mg,Fe)O‐SiO2pseudo‐binary system and find that the solidus melting temperatures near the CMB decrease with FeO and SiO2content, becoming potentially important for ultralow velocity zones. Therefore, an ultralow velocity zone composed of solid‐state bridgmanite and ferropericlase may be relatively enriched in MgO and depleted in SiO2and FeO along a hot CMB.

    more » « less
  3. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

    more » « less
  4. Abstract Understanding the mineralogy of the Earth's interior is a prerequisite for unravelling the evolution and dynamics of our planet. Here, we conducted high pressure-temperature experiments mimicking the conditions of the deep lower mantle (DLM, 1800–2890 km in depth) and observed surprising mineralogical transformations in the presence of water. Ferropericlase, (Mg, Fe)O, which is the most abundant oxide mineral in Earth, reacts with H2O to form a previously unknown (Mg, Fe)O2Hx (x≤1) phase. The (Mg, Fe)O2Hx has the pyrite structure and it coexists with the dominant silicate phases, bridgmanite and post-perovskite. Depending on Mg content and geotherm temperatures, the transformation may occur at 1800 km for (Mg0.6Fe0.4)O or beyond 2300 km for (Mg0.7Fe0.3)O. The (Mg, Fe)O2Hx is an oxygen excess phase that stores an excessive amount of oxygen beyond the charge balance of maximum cation valences (Mg2+, Fe3+, and H+). This important phase has a number of far-reaching implications including the extreme redox inhomogeneity, deep-oxygen reservoirs in the DLM, and an internal source for modulating oxygen in the atmosphere. 
    more » « less
  5. Abstract Transport of heat from the interior of the Earth drives convection in the mantle, which involves the deformation of solid rocks over billions of years. The lower mantle of the Earth is mostly composed of iron-bearing bridgmanite MgSiO 3 and approximately 25% volume periclase MgO (also with some iron). It is commonly accepted that ferropericlase is weaker than bridgmanite 1 . Considerable progress has been made in recent years to study assemblages representative of the lower mantle under the relevant pressure and temperature conditions 2,3 . However, the natural strain rates are 8 to 10 orders of magnitude lower than in the laboratory, and are still inaccessible to us. Once the deformation mechanisms of rocks and their constituent minerals have been identified, it is possible to overcome this limitation thanks to multiscale numerical modelling, and to determine rheological properties for inaccessible strain rates. In this work we use 2.5-dimensional dislocation dynamics to model the low-stress creep of MgO periclase at lower mantle pressures and temperatures. We show that periclase deforms very slowly under these conditions, in particular, much more slowly than bridgmanite deforming by pure climb creep. This is due to slow diffusion of oxygen in periclase under pressure. In the assemblage, this secondary phase hardly participates in the deformation, so that the rheology of the lower mantle is very well described by that of bridgmanite. Our results show that drastic changes in deformation mechanisms can occur as a function of the strain rate. 
    more » « less