Abstract Kazhdan and Lusztig identified the affine Hecke algebra ℋ with an equivariant$$K$$ -group of the Steinberg variety, and applied this to prove the Deligne-Langlands conjecture, i.e., the local Langlands parametrization of irreducible representations of reductive groups over nonarchimedean local fields$$F$$ with an Iwahori-fixed vector. We apply techniques from derived algebraic geometry to pass from$$K$$ -theory to Hochschild homology and thereby identify ℋ with the endomorphisms of a coherent sheaf on the stack of unipotent Langlands parameters, thecoherent Springer sheaf. As a result the derived category of ℋ-modules is realized as a full subcategory of coherent sheaves on this stack, confirming expectations from strong forms of the local Langlands correspondence (including recent conjectures of Fargues-Scholze, Hellmann and Zhu). In the case of the general linear group our result allows us to lift the local Langlands classification of irreducible representations to a categorical statement: we construct a full embedding of the derived category of smooth representations of$$\mathrm{GL}_{n}(F)$$ into coherent sheaves on the stack of Langlands parameters.
more »
« less
The trace of the affine Hecke category
Abstract We compare the (horizontal) trace of the affine Hecke category with the elliptic Hall algebra, thus obtaining an “affine” version of the construction of Gorsky et al. (Int. Math. Res. Not. IMRN2022(2022) 11304–11400). Explicitly, we show that the aforementioned trace is generated by the objects as , where denote the Wakimoto objects of Elias and denote Rouquier complexes. We compute certain categorical commutators between the 's and show that they match the categorical commutators between the sheaves on the flag commuting stack that were considered in Neguț (Publ. Math. Inst. Hautes Études Sci. 135 (2022) 337–418). At the level of ‐theory, these commutators yield a certain integral form of the elliptic Hall algebra, which we can thus map to the ‐theory of the trace of the affine Hecke category.
more »
« less
- Award ID(s):
- 1760329
- PAR ID:
- 10420293
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Proceedings of the London Mathematical Society
- Volume:
- 126
- Issue:
- 6
- ISSN:
- 0024-6115
- Page Range / eLocation ID:
- p. 2013-2056
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We formulate a connection between a topological and a geometric category. The former is the idempotent completion of the (horizontal) trace of the affine Hecke category, while the latter is the equivariant derived category of the (semi-nilpotent) commuting stack. This provides a more precise and improved version of our proposal in Gorsky and Neguț (Proc Lond Math Soc (3) 126(6): 2013–2056, 2023).more » « less
-
Using Auroux’s description of Fukaya categories of symmetric products of punctured surfaces, we compute the partially wrapped Fukaya category of the complement of $k+1$ generic hyperplanes in $$\mathbb{CP}^{n}$$ , for $$k\geqslant n$$ , with respect to certain stops in terms of the endomorphism algebra of a generating set of objects. The stops are chosen so that the resulting algebra is formal. In the case of the complement of $n+2$ generic hyperplanes in $$\mathbb{C}P^{n}$$ ( $$n$$ -dimensional pair of pants), we show that our partial wrapped Fukaya category is equivalent to a certain categorical resolution of the derived category of the singular affine variety $$x_{1}x_{2}\ldots x_{n+1}=0$$ . By localizing, we deduce that the (fully) wrapped Fukaya category of the $$n$$ -dimensional pair of pants is equivalent to the derived category of $$x_{1}x_{2}\ldots x_{n+1}=0$$ . We also prove similar equivalences for finite abelian covers of the $$n$$ -dimensional pair of pants.more » « less
-
The ı \imath Hall algebra of the projective line is by definition the twisted semi-derived Ringel-Hall algebra of the category of 1 1 -periodic complexes of coherent sheaves on the projective line. This ı \imath Hall algebra is shown to realize the universal q q -Onsager algebra (i.e., ı \imath quantum group of split affine A 1 A_1 type) in its Drinfeld type presentation. The ı \imath Hall algebra of the Kronecker quiver was known earlier to realize the same algebra in its Serre type presentation. We then establish a derived equivalence which induces an isomorphism of these two ı \imath Hall algebras, explaining the isomorphism of the q q -Onsager algebra under the two presentations.more » « less
-
Abstract We geometrize the modpSatake isomorphism of Herzig and Henniart–Vignéras using Witt vector affine flag varieties for reductive groups in mixed characteristic. We deduce this as a special case of a formula, stated in terms of the geometry of generalized Mirković–Vilonen cycles, for the Satake transform of an arbitrary parahoric modpHecke algebra with respect to an arbitrary Levi subgroup. Moreover, we prove an explicit formula for the convolution product in an arbitrary parahoric modpHecke algebra. Our methods involve the constant term functors inspired from the geometric Langlands program, and we also treat the case of reductive groups in equal characteristic. We expect this to be a first step toward a geometrization of a modpLocal Langlands Correspondence.more » « less
An official website of the United States government
