skip to main content


Title: Fast and Accurate Estimation of Evapotranspiration for Smart Agriculture
Abstract

The ability to quantify evapotranspiration (ET) is crucial for smart agriculture and sustainable groundwater management. Efficient ET estimation strategies often rely on the vertical‐flow assumption to assimilate data from soil‐moisture sensors. While adequate in some large‐scale applications, this assumption fails when the horizontal component of the local flow velocity is not negligible due to, for example, soil heterogeneity or drip irrigation. We present novel implementations of the ensemble Kalman filter (EnKF) and the maximum likelihood estimation (MLE), which enable us to infer spatially varying ET rates and root water uptake profiles from soil‐moisture measurements. While the standard versions of EnKF and MLE update the predicted soil moisture prior to computing ET, ours treat the ET sink term in Richards' equation as an updatable observable. We test the prediction accuracy and computational efficiency of our methods in a setting representative of drip irrigation. Our strategies accurately estimate the total ET rates and root‐uptake profiles and do so up to two‐orders of magnitude faster than the standard EnKF.

 
more » « less
PAR ID:
10420299
Author(s) / Creator(s):
 ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Water Resources Research
Volume:
59
Issue:
4
ISSN:
0043-1397
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Evapotranspiration is arguably the least quantified component of the hydrologic cycle. We propose two complementary strategies for estimation of evapotranspiration rates and root water uptake profiles from soil‐moisture sensor‐array data. One is our implementation of ensemble Kalman filter (EnKF); it treats the evapotranspiration sink term in the Richards equation, rather than soil moisture, as the observable to update. The other is a maximum likelihood estimator (MLE) applied to the same observable; it is supplemented with the Fisher information matrix to quantify uncertainty in its predictions. We use numerical experiments to demonstrate the accuracy and computational efficiency of these techniques. We found our EnKF implementation to be two orders of magnitude faster than either the standard EnKF or MLE, and our MLE procedure to require an order of magnitude fewer iterations to converge than its counterpart applied to soil moisture. These findings render our methodologies a viable and practical tool for estimation of the root water uptake profiles and evaporation rates, with the MLE technique to be used when the prior knowledge about evapotranspiration at the site is elusive.

     
    more » « less
  2. Soil salinization is a global phenomenon that affects large tracts of arid farmland worldwide. It contributes to the loss of soil fertility, declining yields, and – in the most severe cases – land unsuitability for cultivation. Irrigation water applications are both the main cause of and the solution to, anthropogenic (or ‘secondary’) salinization because salt typically enters the soil column as dissolved in irrigation water and leaves it through excess water applications (e.g., leaching). Excess leaching, which places additional water costs in areas affected by water scarcity, can be achieved with different irrigation techniques and practices. Here, by complementing a process-based crop water model with a salt balance of the shallow soil, we investigate the tradeoff between root zone salinization and water conservation to limit withdrawals from the water source. We evaluate how such a tradeoff is achieved under different irrigation technology and excess leaching practices. Considering as a case study the cultivation of tomatoes in Egypt, we find that drip and furrow irrigation allows for better control of salt accumulation, thus preventing crop exposure to salt stress. Drip irrigation achieves this goal with minimal water applications because it maintains the soil wetter. Thus, the (rare) rainfall events find more suitable conditions to drain the excess moisture. Conversely, by using more irrigation water (and ‘less efficiently’), furrow irrigation allows for higher rates of soil drainage and salt leaching. The irrigation schedule typically adopted with sprinkler irrigation allows for soil drying, thus limiting the ability of rainfall events to drain the soil and leach its salts. Collectively, these results highlight the key role of irrigation technology and practices in the management of secondary salinity in dryland agriculture. Specifically, there is a tradeoff between minimizing water use and preventing salt accumulation in the root zone. Drip irrigation exhibits the co-benefit of achieving both goals, while furrow irrigation limits soil salinity at the cost of requiring greater volumes of applied irrigation water. 
    more » « less
  3. Crop growth depends on the root-zone soil moisture (RZSM) (~top 1m). Accurate estimation of RZSM is vital to optimize irrigation management for saving water and energy while sustaining crop yield. The High-Resolution Land Assimilation System (HRLDAS) from NCAR can generate RZSM at field scales for irrigation management. The soil moisture data from various agriculture sites in the AmeriFlux network, U.S. Climate Reference Network (USCRN), and Soil Climate Analysis Network (SCAN) are used to verify the soil moisture products generated by HRLDAS. Although the HRLDAS products is not location specific and could be applied nationwide, this study will focus on Nebraska for evaluation, validation, and further calibration. We also compared NASA’s SMAP surface soil moisture products to HRLDAS surface layer soil moisture. Since the accuracy of the SMAP product is known, this comparison directly validates the HRLDAS surface soil moisture product and indirectly validate its RZSM products. Results from these two validation methods show a good accuracy of HRLDAS soil moisture products. The conspicuous differences between HRLDAS and SMAP products indicate that HRLDAS omits the irrigation activities as its simulation is based on weather variables and energy balance. It’s hard for HRLDAS to consider and include the irrigation actions in its results, while as SMAP products remotely sense the soil moisture as it is, the changes caused by irrigation are clearly reflected. Therefore, a simple calibration is applied to the HRLDAS products by including irrigation amount as its variables. 
    more » « less
  4. Given the increasing prevalence of droughts, unpredictable rainfall patterns, and limited access to dependable water sources in the United States and worldwide, it has become crucial to implement effective irrigation scheduling strategies. Irrigation is triggered when some variables, such as soil moisture or accumulated water deficit, exceed a given threshold in the most common approaches applied in irrigation scheduling. A High-Resolution Land Data Assimilation System (HRLDAS) was used in this study to generate timely and accurate soil moisture and evapotranspiration (ET) data for irrigation management. By integrating HRLDAS products and the crop growth model (AquaCrop), an automated data-driven irrigation scheduling approach was developed and evaluated. For HRLDAS ET and soil moisture, the ET-water balance (ET-WB)-based method and soil-moisture-based method were applied accordingly. The ET-WB-based method showed a 10.6~33.5% water-saving result in dry and set seasons, whereas the soil moisture-based method saved 7.2~37.4% of irrigation water in different weather conditions. Both of these methods demonstrated good results in saving water (with a varying range of 10~40%) without harming crop yield. The optimized thresholds in the two approaches were partially consistent with the default values from the Food and Agriculture Organization and showed a similar trend in the growing season. Furthermore, the forecasted rainfall was integrated into this model to see its water-saving effect. The results showed that an additional 10% of irrigation water, which is 20~50%, can be saved without harming the crop yield. This study automated the data-driven approach for irrigation scheduling by taking advantage of HRLDAS products, which can be generated in a near-real-time manner. The results indicated the great potential of this automated approach for saving water and irrigation decision making.

     
    more » « less
  5. Abstract

    Soil hydrology provides important background for understanding the fate of organic carbon (OC) buried by geomorphic processes as well as the influence of runoff, infiltration, and plant root uptake on long‐term erosion and landscape evolution. We modeled the hydrology of a 4.5‐m loess‐paleosol sequence on an eroding tableland in the U.S. central Great Plains using Hydrus 1D, a numerical unsaturated flow model, parameterized with high resolution measurements of the soil water retention and hydraulic conductivity curves, which were distinct for the loess and paleosols. We hypothesized that (a) the connection of paleosols to modern climate depends on their burial depth, (b) paleosols in the root zone would have broader pore‐size distributions than unweathered loess, and (c) this broader pore‐size distribution increased root water uptake and made vegetation more resilient to drought, increasing the stability of loess tablelands despite high erodibility and high local relief. Four years with varying total annual precipitation were simulated for the observed profile and two hypothetical profiles, one without paleosols and another with a shallow, strongly developed paleosol. In these simulations, soil moisture in shallow paleosols responds quickly to precipitation while a deeply buried paleosol is largely disconnected from the modern climate, contributing to buried OC preservation. Contrary to our expectation, the presence of paleosols did not increase root uptake relative to unweathered loess in either wet or dry years. The unweathered coarse loess we studied may have an optimal pore‐size distribution for root uptake, providing an alternative hypothesis for why highly erodible loess tablelands persist.

     
    more » « less