skip to main content


Title: Enhancing Video Analytics Accuracy via Real-time Automated Camera Parameter Tuning
In Video Analytics Pipelines (VAP), Analytics Units (AUs) such as object detection and face recognition running on remote servers critically rely on surveillance cameras to capture high-quality video streams in order to achieve high accuracy. Modern IP cameras come with a large number of camera parameters that directly affect the quality of the video stream capture. While a few of such parameters, e.g., exposure, focus, white balance are automatically adjusted by the camera internally, the remaining ones are not. We denote such camera parameters as non-automated (NAUTO) parameters. In this paper, we first show that environmental condition changes can have significant adverse effect on the accuracy of insights from the AUs, but such adverse impact can potentially be mitigated by dynamically adjusting NAUTO camera parameters in response to changes in environmental conditions. We then present CamTuner, to our knowledge, the first framework that dynamically adapts NAUTO camera parameters to optimize the accuracy of AUs in a VAP in response to adverse changes in environmental conditions. CamTuner is based on SARSA reinforcement learning and it incorporates two novel components: a light-weight analytics quality estimator and a virtual camera that drastically speed up offline RL training. Our controlled experiments and real-world VAP deployment show that compared to a VAP using the default camera setting, CamTuner enhances VAP accuracy by detecting 15.9% additional persons and 2.6%--4.2% additional cars (without any false positives) in a large enterprise parking lot and 9.7% additional cars in a 5G smart traffic intersection scenario, which enables a new usecase of accurate and reliable automatic vehicle collision prediction (AVCP). CamTuner opens doors for new ways to significantly enhance video analytics accuracy beyond incremental improvements from refining deep-learning models.  more » « less
Award ID(s):
2211459
NSF-PAR ID:
10420350
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Proc. of The 20th ACM Conference on Embedded Networked Sensor Systems (SenSys 2022)
Page Range / eLocation ID:
291 to 304
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cameras are increasingly being deployed in cities, enterprises and roads world-wide to enable many applications in public safety, intelligent transportation, retail, healthcare and manufacturing. Often, after initial deployment of the cameras, the environmental conditions and the scenes around these cameras change, and our experiments show that these changes can adversely impact the accuracy of insights from video analytics. This is because the camera parameter settings, though optimal at deployment time, are not the best settings for good-quality video capture as the environmental conditions and scenes around a camera change during operation. Capturing poor-quality video adversely affects the accuracy of analytics. To mitigate the loss in accuracy of insights, we propose a novel, reinforcement-learning based system APT that dynamically, and remotely (over 5G networks), tunes the camera parameters, to ensure a high-quality video capture, which mitigates any loss in accuracy of video analytics. As a result, such tuning restores the accuracy of insights when environmental conditions or scene content change. APT uses reinforcement learning, with no-reference perceptual quality estimation as the reward function. We conducted extensive real-world experiments, where we simultaneously deployed two cameras side-by-side overlooking an enterprise parking lot (one camera only has manufacturer-suggested default setting, while the other camera is dynamically tuned by APT during operation). Our experiments demonstrated that due to dynamic tuning by APT, the analytics insights are consistently better at all times of the day: the accuracy of object detection video analytics application was improved on average by ∼ 42%. Since our reward function is independent of any analytics task, APT can be readily used for different video analytics tasks. 
    more » « less
  2. It is a common practice to think of a video as a sequence of images (frames), and re-use deep neural network models that are trained only on images for similar analytics tasks on videos. In this paper, we show that this “leap of faith” that deep learning models that work well on images will also work well on videos is actually flawed.We show that even when a video camera is viewing a scene that is not changing in any humanperceptible way, and we control for external factors like video compression and environment (lighting), the accuracy of video analytics application fluctuates noticeably. These fluctuations occur because successive frames produced by the video camera may look similar visually, but are perceived quite differently by the video analytics applications.We observed that the root cause for these fluctuations is the dynamic camera parameter changes that a video camera automatically makes in order to capture and produce a visually pleasing video. The camera inadvertently acts as an “unintentional adversary” because these slight changes in the image pixel values in consecutive frames, as we show, have a noticeably adverse impact on the accuracy of insights from video analytics tasks that re-use image-trained deep learning models. To address this inadvertent adversarial effect from the camera, we explore the use of transfer learning techniques to improve learning in video analytics tasks through the transfer of knowledge from learning on image analytics tasks. Our experiments with a number of different cameras, and a variety of different video analytics tasks, show that the inadvertent adversarial effect from the camera can be noticeably offset by quickly re-training the deep learning models using transfer learning. In particular, we show that our newly trained Yolov5 model reduces fluctuation in object detection across frames, which leads to better tracking of objects (∼40% fewer mistakes in tracking). Our paper also provides new directions and techniques to mitigate the camera’s adversarial effect on deep learning models used for video analytics applications. 
    more » « less
  3. 5G services and applications explicitly reserve compute and network resources in today’s complex and dynamic infrastructure of multi-tiered computing and cellular networking to ensure application-specific service quality metrics, and the infrastructure providers charge the 5G services for the resources reserved. A static, one-time reservation of resources at service deployment typically results in extended periods of under-utilization of reserved resources during the lifetime of the service operation. This is due to a plethora of reasons like changes in content from the IoT sensors (for example, change in number of people in the field of view of a camera) or a change in the environmental conditions around the IoT sensors (for example, time of the day, rain or fog can affect data acquisition by sensors). Under-utilization of a specific resource like compute can also be due to temporary inadequate availability of another resource like the network bandwidth in a dynamic 5G infrastructure. We propose a novel Reinforcement Learning-based online method to dynamically adjust an application’s compute and network resource reservations to minimize under-utilization of requested resources, while ensuring acceptable service quality metrics. We observe that a complex application-specific coupling exists between the compute and network usage of an application. Our proposed method learns this coupling during the operation of the service, and dynamically modulates the compute and network resource requests to minimize under-utilization of reserved resources. Through experimental evaluation using real-world video analytics application, we show that our technique is able to capture complex compute-network coupling relationship in an online manner i.e. while the application is running, and dynamically adapts and saves up to 65% compute and 93% network resources on average (over multiple runs), without significantly impacting application accuracy. 
    more » « less
  4. null (Ed.)
    As camera quality improves and their deployment moves to areas with limited bandwidth, communication bottlenecks can impair real-time constraints of an intelligent transportation systems application, such as video-based real-time pedestrian detection. Video compression reduces the bandwidth requirement to transmit the video which degrades the video quality. As the quality level of the video decreases, it results in the corresponding decreases in the accuracy of the vision-based pedestrian detection model. Furthermore, environmental conditions, such as rain and night-time darkness impact the ability to leverage compression by making it more difficult to maintain high pedestrian detection accuracy. The objective of this study is to develop a real-time error-bounded lossy compression (EBLC) strategy to dynamically change the video compression level depending on different environmental conditions to maintain a high pedestrian detection accuracy. We conduct a case study to show the efficacy of our dynamic EBLC strategy for real-time vision-based pedestrian detection under adverse environmental conditions. Our strategy dynamically selects the lossy compression error tolerances that maintain a high detection accuracy across a representative set of environmental conditions. Analyses reveal that for adverse environmental conditions, our dynamic EBLC strategy increases pedestrian detection accuracy up to 14% and reduces the communication bandwidth up to 14 × compared to the state-of-the-practice. Moreover, we show our dynamic EBLC strategy is independent of pedestrian detection models and environmental conditions allowing other detection models and environmental conditions to be easily incorporated. 
    more » « less
  5. Driven by advances in computer vision and the falling costs of camera hardware, organizations are deploying video cameras en masse for the spatial monitoring of their physical premises. Scaling video analytics to massive camera deployments, however, presents a new and mounting challenge, as compute cost grows proportionally to the number of camera feeds. This paper is driven by a simple question: can we scale video analytics in such a way that cost grows sublinearly, or even remains constant, as we deploy more cameras, while inference accuracy remains stable, or even improves. We believe the answer is yes. Our key observation is that video feeds from wide-area camera deployments demonstrate significant content correlations (e.g. to other geographically proximate feeds), both in space and over time. These spatio-temporal correlations can be harnessed to dramatically reduce the size of the inference search space, decreasing both workload and false positive rates in multi-camera video analytics. By discussing use-cases and technical challenges, we propose a roadmap for scaling video analytics to large camera networks, and outline a plan for its realization. 
    more » « less