skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Negative Longitudinal Piezoelectricity Coexisting with both Negative and Positive Transverse Piezoelectricity in a Hybrid Formate Perovskite
Award ID(s):
2029800
PAR ID:
10420393
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
ACS Applied Materials & Interfaces
Volume:
14
Issue:
41
ISSN:
1944-8244
Page Range / eLocation ID:
46449 to 46456
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Due to environmental concerns and the increasing drive towards miniaturization of electronic circuits and devices, lead-free ferroelectric films with low leakage current and robust ferroelectric and piezoelectric properties are highly desired. The preferred alternative, BaTiO 3 , is non-toxic and has ferroelectric properties, but its high leakage current, poor ferroelectricity and piezoelectricity and low Curie temperature of ∼130 °C in thin film form are obstacles for high-temperature practical applications. Here, we report that a negative-pressure-driven enhancement of ferroelectric Curie temperature and effective piezoelectric coefficient are achieved in (111)-oriented BaTiO 3 nanocomposite films. The enhanced ferroelectric and piezoelectric properties in the emergent monoclinic BaTiO 3 are attributed to the sharp vertical interface and 3D tensile strain that develops upon interspersing stiff and self-assembled vertical Sm 2 O 3 nanopillars through the film thickness. Our work also demonstrates that fabricating oxide films through (111)-oriented epitaxy opens up new avenues for the creation of new phase components and exploration of novel functionalities for developing oxide quantum electronic devices. 
    more » « less
  2. Abstract Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material. 
    more » « less
  3. Abstract Piezoelectric materials show potential to harvest the ubiquitous, abundant, and renewable energy associated with mechanical vibrations. However, the best performing piezoelectric materials typically contain lead which is a carcinogen. Such lead-containing materials are hazardous and are being increasingly curtailed by environmental regulations. In this study, we report that the lead-free chalcogenide perovskite family of materials exhibits piezoelectricity. First-principles calculations indicate that even though these materials are centrosymmetric, they are readily polarizable when deformed. The reason for this is shown to be a loosely packed unit cell, containing a significant volume of vacant space. This allows for an extended displacement of the ions, enabling symmetry reduction, and resulting in an enhanced displacement-mediated dipole moment. Piezoresponse force microscopy performed on BaZrS3confirmed that the material is piezoelectric. Composites of BaZrS3particles dispersed in polycaprolactone were developed to harvest energy from human body motion for the purposes of powering electrochemical and electronic devices. 
    more » « less
  4. Abstract Piezoelectricity in low‐dimensional materials and metal–semiconductor junctions has attracted recent attention. Herein, a 2D in‐plane metal–semiconductor junction made of multilayer 2H and 1T′ phases of molybdenum(IV) telluride (MoTe2) is investigated. Strong piezoelectric response is observed using piezoresponse force microscopy at the 2H–1T′ junction, despite that the multilayers of each individual phase are weakly piezoelectric. The experimental results and density functional theory calculations suggest that the amplified piezoelectric response observed at the junction is due to the charge transfer across the semiconducting and metallic junctions resulting in the formation of dipoles and excess charge density, allowing the engineering of piezoelectric response in atomically thin materials. 
    more » « less