skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Piezoelectricity in hafnia
Abstract Because of its compatibility with semiconductor-based technologies, hafnia (HfO 2 ) is today’s most promising ferroelectric material for applications in electronics. Yet, knowledge on the ferroic and electromechanical response properties of this all-important compound is still lacking. Interestingly, HfO 2 has recently been predicted to display a negative longitudinal piezoelectric effect, which sets it apart from classic ferroelectrics (e.g., perovskite oxides like PbTiO 3 ) and is reminiscent of the behavior of some organic compounds. The present work corroborates this behavior, by first-principles calculations and an experimental investigation of HfO 2 thin films using piezoresponse force microscopy. Further, the simulations show how the chemical coordination of the active oxygen atoms is responsible for the negative longitudinal piezoelectric effect. Building on these insights, it is predicted that, by controlling the environment of such active oxygens (e.g., by means of an epitaxial strain), it is possible to change the sign of the piezoelectric response of the material.  more » « less
Award ID(s):
1917635
PAR ID:
10358802
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
12
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Hafnia (HfO 2 ) is a promising material for emerging chip applications due to its high- κ dielectric behavior, suitability for negative capacitance heterostructures, scalable ferroelectricity, and silicon compatibility. The lattice dynamics along with phononic properties such as thermal conductivity, contraction, and heat capacity are under-explored, primarily due to the absence of high quality single crystals. Herein, we report the vibrational properties of a series of HfO 2 crystals stabilized with yttrium (chemical formula HfO 2 :  x Y, where x  = 20, 12, 11, 8, and 0%) and compare our findings with a symmetry analysis and lattice dynamics calculations. We untangle the effects of Y by testing our calculations against the measured Raman and infrared spectra of the cubic, antipolar orthorhombic, and monoclinic phases and then proceed to reveal the signature modes of polar orthorhombic hafnia. This work provides a spectroscopic fingerprint for several different phases of HfO 2 and paves the way for an analysis of mode contributions to high- κ dielectric and ferroelectric properties for chip technologies. 
    more » « less
  2. Here, we discuss a model for the quasi-static magnetoelectric (ME) interaction in three-layer composites consisting of a single piezoelectric (PE) layer and two magnetostrictive (MS) layers with positive and negative magnetostriction. Two types of layer arrangements are considered: Type 1: a sandwich structure with the PE layer between the two MS layers and Type 2: the two MS layers form the adjacent layers. Expressions for the ME response are obtained using the system of equations of elasto- and electrostatics for the PE and MS phases. The contributions from longitudinal and bending vibrations to the net ME response are considered. The theory is applied for trilayers consisting of lead zirconate titanate (PZT), nickel for negative magnetostriction, and Metglas for positive magnetostriction. Estimates of the dependence of the strength of the ME response on the thickness of the three layers are provided. It is shown that the asymmetric three-layer structures of both types lead to an increase in the strength of ME interactions by almost an order of magnitude compared to a two-layer piezoelectric-magnetostrictive structure. The model predicts a much stronger ME response in Type 2 structures than in Type 1. The theory discussed here is of importance for designing composites for applications such as magnetic field sensors, gyrators, and energy harvesters. 
    more » « less
  3. Metastable materials that represent excursions from thermodynamic minima are characterized by distinctive structural motifs and electronic structure, which frequently underpins new function. The binary oxides of hafnium present a rich diversity of crystal structures and are of considerable technological importance given their high dielectric constants, refractory characteristics, radiation hardness, and anion conductivity; however, high-symmetry tetragonal and cubic polymorphs of HfO 2 are accessible only at substantially elevated temperatures (1720 and 2600 °C, respectively). Here, we demonstrate that the core–shell arrangement of VO 2 and amorphous HfO 2 promotes outwards oxygen diffusion along an electropositivity gradient and yields an epitaxially matched V 2 O 3 /HfO 2 interface that allows for the unprecedented stabilization of the metastable cubic polymorph of HfO 2 under ambient conditions. Free-standing cubic HfO 2 , otherwise accessible only above 2600 °C, is stabilized by acid etching of the vanadium oxide core. In contrast, interdiffusion under oxidative conditions yields the negative thermal expansion material HfV 2 O 7 . Variable temperature powder X-ray diffraction demonstrate that the prepared HfV 2 O 7 exhibits pronounced negative thermal expansion in the temperature range between 150 and 700 °C. The results demonstrate the potential of using epitaxial crystallographic relationships to facilitate preferential nucleation of otherwise inaccessible metastable compounds. 
    more » « less
  4. Piezoelectric devices transduce mechanical energy to electrical energy by elastic deformation, which distorts local dipoles in crystalline materials. Amongst electromechanical sensors, piezoelectric devices are advantageous because of their scalability, light weight, low power consumption, and readily built-in amplification and ability for multiplexing, which are essential for wearables, medical devices, and robotics. This paper reviews recent progress in active piezoelectric devices. We classify these piezoelectric devices according to the material dimensionality and present physics-based device models to describe and quantify the piezoelectric response for one-dimensional nanowires, emerging two-dimensional materials, and three-dimensional thin films. Different transduction mechanisms and state-of-the-art devices for each type of material are reviewed. Perspectives on the future applications of active piezoelectric devices are discussed. 
    more » « less
  5. Do negative feelings in general trigger addictive behavior, or do specific emotions play a stronger role? Testing these alternative accounts of emotion and decision making, we drew on the Appraisal Tendency Framework to predict that sadness, specifically, rather than negative mood, generally, would 1) increase craving, impatience, and actual addictive substance use and 2) do so through mechanisms selectively heightened by sadness. Using a nationally representative, longitudinal survey, study 1 (n= 10,685) revealed that sadness, but not other negative emotions (i.e., fear, anger, shame), reliably predicted current smoking as well as relapsing 20 years later. Study 2 (n= 425) used an experimental design, and found further support for emotion specificity: Sadness, but not disgust, increased self-reported craving relative to a neutral state. Studies 3 and 4 (n= 918) introduced choice behavior as outcome variables, revealing that sadness causally increased impatience for cigarette puffs. Moreover, study 4 revealed that the effect of sadness on impatience was more fully explained by concomitant appraisals of self-focus, which are specific to sadness, than by concomitant appraisals of negative valence, which are general to all negative emotions. Importantly, study 4 also examined the topography of actual smoking behavior, finding that experimentally induced sadness (as compared to neutral emotion) causally increased the volume and duration of cigarette puffs inhaled. Together, the present studies provide support for a more nuanced model regarding the effects of emotion on tobacco use, in particular, as well as on addictive behavior, in general. 
    more » « less