Abstract We consider the generating series of special cycles on , with full level structure, valued in the cohomology of degree . The modularity theorem of Kudla–Millson for locally symmetric spaces implies that these series are modular. When , the images of these loci in are the ‐elliptic Noether–Lefschetz loci, which are conjectured to be modular. In the Appendix, it is shown that the resulting modular forms are nonzero for when and .
more »
« less
Definite orthogonal modular forms: computations, excursions, and discoveries
Abstract We consider spaces of modular forms attached to definite orthogonal groups of low even rank and nontrivial level, equipped with Hecke operators defined by Kneser neighbours. After reviewing algorithms to compute with these spaces, we investigate endoscopy using theta series and a theorem of Rallis. Along the way, we exhibit many examples and pose several conjectures. As a first application, we express counts of Kneser neighbours in terms of coefficients of classical or Siegel modular forms, complementing work of Chenevier–Lannes. As a second application, we prove new instances of Eisenstein congruences of Ramanujan and Kurokawa–Mizumoto type.
more »
« less
- Award ID(s):
- 1946311
- PAR ID:
- 10420429
- Date Published:
- Journal Name:
- Research in Number Theory
- Volume:
- 8
- Issue:
- 4
- ISSN:
- 2522-0160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary The fused lasso, also known as total-variation denoising, is a locally adaptive function estimator over a regular grid of design points. In this article, we extend the fused lasso to settings in which the points do not occur on a regular grid, leading to a method for nonparametric regression. This approach, which we call the $$K$$-nearest-neighbours fused lasso, involves computing the $$K$$-nearest-neighbours graph of the design points and then performing the fused lasso over this graph. We show that this procedure has a number of theoretical advantages over competing methods: specifically, it inherits local adaptivity from its connection to the fused lasso, and it inherits manifold adaptivity from its connection to the $$K$$-nearest-neighbours approach. In a simulation study and an application to flu data, we show that excellent results are obtained. For completeness, we also study an estimator that makes use of an $$\epsilon$$-graph rather than a $$K$$-nearest-neighbours graph and contrast it with the $$K$$-nearest-neighbours fused lasso.more » « less
-
The Eichler-Selberg trace formulas express the traces of Hecke operators on a spaces of cusp forms in terms of weighted sums of Hurwitz-Kronecker class numbers. For cusp forms on $$\text {\rm SL}_2(\mathbb{Z}),$$ Zagier proved these formulas by cleverly making use of the weight 3/2 nonholomorphic Eisenstein series he discovered in the 1970s. The holomorphic part of this form, its so-called {\it mock modular form}, is the generating function for these class numbers. In this expository note we revisit Zagier's method, and we show how to obtain such formulas for congruence subgroups, working out the details for $$\Gamma_0(2)$$ and $$\Gamma_0(4).$$ The trace formulas fall out naturally from the computation of the Rankin-Cohen brackets of Zagier's mock modular form with specific theta functions.more » « less
-
This article is in commemoration of Ramanujan's election as Fellow of The Royal Society 100 years ago, as celebrated at the October 2018 scientific meeting at the Royal Society in London. Ramanujan's last letter to Hardy, written shortly after his election, surrounds his mock theta functions. While these functions have been of great importance and interest in the decades following Ramanujan's death in 1920, it was unclear how exactly they fit into the theory of modular forms—Dyson called this ‘a challenge for the future’ at another centenary conference in Illinois in 1987, honouring the 100th anniversary of Ramanujan's birth. In the early 2000s, Zwegers finally recognized that Ramanujan had discovered glimpses of special families of non-holomorphic modular forms, which we now know to be Bruinier and Funke's harmonic Maass forms from 2004, the holomorphic parts of which are called mock modular forms. As of a few years ago, a fundamental question from Ramanujan's last letter remained, on a certain asymptotic relationship between mock theta functions and ordinary modular forms. The author, with Ono and Rhoades, revisited Ramanujan's asymptotic claim, and established a connection between mock theta functions and quantum modular forms, which were not defined until 90 years later in 2010 by Zagier. Here, we bring together past and present, and study the relationships between mock modular forms and quantum modular forms, with Ramanujan's mock theta functions as motivation. In particular, we highlight recent work of Bringmann–Rolen, Choi–Lim–Rhoades and Griffin–Ono–Rolen in our discussion. This article is largely expository, but not exclusively: we also establish a new interpretation of Ramanujan's radial asymptotic limits in the subject of topology. This article is part of a discussion meeting issue ‘Srinivasa Ramanujan: in celebration of the centenary of his election as FRS’.more » « less
-
We give a proof of the slope classicality theorem in classical and higher Coleman theory for modular curves of arbitrary level using the completed cohomology classes attached to overconvergent modular forms. The latter give an embedding of the quotient of overconvergent modular forms by classical modular forms, which is the obstruction space for classicality in either cohomological degree, into a unitary representation of GL 2 ( ℚ p ) . The U p operator becomes a double coset, and unitarity yields slope vanishing.more » « less
An official website of the United States government

