This study explored how population mobility flows form commuting networks across US counties and influence the spread of COVID-19. We utilized 3-level mixed effects negative binomial regression models to estimate the impact of network COVID-19 exposure on county confirmed cases and deaths over time. We also conducted weighting-based analyses to estimate the causal effect of network exposure. Results showed that commuting networks matter for COVID-19 deaths and cases, net of spatial proximity, socioeconomic, and demographic factors. Different local racial and ethnic concentrations are also associated with unequal outcomes. These findings suggest that commuting is an important causal mechanism in the spread of COVID-19 and highlight the significance of interconnected of communities. The results suggest that local level mitigation and prevention efforts are more effective when complemented by similar efforts in the network of connected places. Implications for research on inequality in health and flexible work arrangements are discussed.
more »
« less
COVID-19 cases and deaths in the United States follow Taylor’s law for heavy-tailed distributions with infinite variance
The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood. We show that variations in the cumulative reported cases and deaths by county, state, and date exemplify Taylor’s law of fluctuation scaling. Specifically, on day 1 of each month from April 2020 through June 2021, each state’s variance (across its counties) of cases is nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly. The lower 99% of counts of cases and deaths across all counties are approximately lognormally distributed. Unexpectedly, the largest 1% of counts are approximately Pareto distributed, with a tail index that implies a finite mean and an infinite variance. We explain why the counts across the entire distribution conform to Taylor’s law with exponent two using models and mathematics. The finding of infinite variance has practical consequences. Local jurisdictions (counties, states, and countries) that are planning for prevention and care of largely unvaccinated populations should anticipate the rare but extremely high counts of cases and deaths that occur in distributions with infinite variance. Jurisdictions should prepare collaborative responses across boundaries, because extremely high local counts of cases and deaths may vary beyond the resources of any local jurisdiction.
more »
« less
- PAR ID:
- 10420548
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 119
- Issue:
- 38
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Kainz, W.; Manley, E.; Delmelle, E.; Birkin, M.; Gahegan, M.; Kwan, M-P. (Ed.)As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county),as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases.more » « less
-
Unequal Opportunity Spreaders: Higher COVID-19 Deaths with Later School Closure in the United Statesnull (Ed.)Mixed evidence on the relationship between school closure and COVID-19 prevalence could reflect focus on large-scale levels of geography, limited ability to address endogeneity, and demographic variation. Using county-level Centers for Disease Control and Prevention (CDC) COVID-19 data through June 15, 2020, two matching strategies address potential heterogeneity: nearest geographic neighbor and propensity scores. Within nearest neighboring pairs in different states with different school closure timing, each additional day from a county’s first case until state-ordered school closure is related to 1.5 to 2.4 percent higher cumulative COVID-19 deaths per capita (1,227–1,972 deaths for a county with median population and deaths/capita). Results are consistent using propensity score matching, COVID-19 data from two alternative sources, and additional sensitivity analyses. School closure is more strongly related to COVID-19 deaths in counties with a high concentration of Black or poor residents, suggesting schools play an unequal role in transmission and earlier school closure is related to fewer lives lost in disadvantaged counties.more » « less
-
null (Ed.)Abstract The objective of this study is to examine the transmission risk of COVID-19 based on cross-county population co-location data from Facebook. The rapid spread of COVID-19 in the United States has imposed a major threat to public health, the real economy, and human well-being. With the absence of effective vaccines, the preventive actions of social distancing, travel reduction and stay-at-home orders are recognized as essential non-pharmacologic approaches to control the infection and spatial spread of COVID-19. Prior studies demonstrated that human movement and mobility drove the spatiotemporal distribution of COVID-19 in China. Little is known, however, about the patterns and effects of co-location reduction on cross-county transmission risk of COVID-19. This study utilizes Facebook co-location data for all counties in the United States from March to early May 2020 for conducting spatial network analysis where nodes represent counties and edge weights are associated with the co-location probability of populations of the counties. The analysis examines the synchronicity and time lag between travel reduction and pandemic growth trajectory to evaluate the efficacy of social distancing in ceasing the population co-location probabilities, and subsequently the growth in weekly new cases across counties. The results show that the mitigation effects of co-location reduction appear in the growth of weekly new confirmed cases with one week of delay. The analysis categorizes counties based on the number of confirmed COVID-19 cases and examines co-location patterns within and across groups. Significant segregation is found among different county groups. The results suggest that within-group co-location probabilities (e.g., co-location probabilities among counties with high numbers of cases) remain stable, and social distancing policies primarily resulted in reduced cross-group co-location probabilities (due to travel reduction from counties with large number of cases to counties with low numbers of cases). These findings could have important practical implications for local governments to inform their intervention measures for monitoring and reducing the spread of COVID-19, as well as for adoption in future pandemics. Public policy, economic forecasting, and epidemic modeling need to account for population co-location patterns in evaluating transmission risk of COVID-19 across counties.more » « less
-
We present an interpretable high-resolution spatio-temporal model to estimate COVID-19 deaths together with confirmed cases 1 week ahead of the current time, at the county level and weekly aggregated, in the United States. A notable feature of our spatio-temporal model is that it considers the (1) temporal auto- and pairwise correlation of the two local time series (confirmed cases and deaths from the COVID-19), (2) correlation between locations (propagation between counties), and (3) covariates such as local within-community mobility and social demographic factors. The within-community mobility and demographic factors, such as total population and the proportion of the elderly, are included as important predictors since they are hypothesized to be important in determining the dynamics of COVID-19. To reduce the model’s high dimensionality, we impose sparsity structures as constraints and emphasize the impact of the top 10 metropolitan areas in the nation, which we refer to (and treat within our models) as hubs in spreading the disease. Our retrospective out-of-sample county-level predictions were able to forecast the subsequently observed COVID-19 activity accurately. The proposed multivariate predictive models were designed to be highly interpretable, with clear identification and quantification of the most important factors that determine the dynamics of COVID-19. Ongoing work involves incorporating more covariates, such as education and income, to improve prediction accuracy and model interpretability.more » « less
An official website of the United States government

