skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Unequal Opportunity Spreaders: Higher COVID-19 Deaths with Later School Closure in the United States
Mixed evidence on the relationship between school closure and COVID-19 prevalence could reflect focus on large-scale levels of geography, limited ability to address endogeneity, and demographic variation. Using county-level Centers for Disease Control and Prevention (CDC) COVID-19 data through June 15, 2020, two matching strategies address potential heterogeneity: nearest geographic neighbor and propensity scores. Within nearest neighboring pairs in different states with different school closure timing, each additional day from a county’s first case until state-ordered school closure is related to 1.5 to 2.4 percent higher cumulative COVID-19 deaths per capita (1,227–1,972 deaths for a county with median population and deaths/capita). Results are consistent using propensity score matching, COVID-19 data from two alternative sources, and additional sensitivity analyses. School closure is more strongly related to COVID-19 deaths in counties with a high concentration of Black or poor residents, suggesting schools play an unequal role in transmission and earlier school closure is related to fewer lives lost in disadvantaged counties.  more » « less
Award ID(s):
1749275
PAR ID:
10287960
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Sociological Perspectives
ISSN:
0731-1214
Page Range / eLocation ID:
073112142110054
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) the causal agent for COVID-19, is a communicable disease spread through close contact. It is known to disproportionately impact certain communities due to both biological susceptibility and inequitable exposure. In this study, we investigate the most important health, social, and environmental factors impacting the early phases (before July, 2020) of per capita COVID-19 transmission and per capita all-cause mortality in US counties. We aggregate county-level physical and mental health, environmental pollution, access to health care, demographic characteristics, vulnerable population scores, and other epidemiological data to create a large feature set to analyze per capita COVID-19 outcomes. Because of the high-dimensionality, multicollinearity, and unknown interactions of the data, we use ensemble machine learning and marginal prediction methods to identify the most salient factors associated with several COVID-19 outbreak measure. Our variable importance results show that measures of ethnicity, public transportation and preventable diseases are the strongest predictors for both per capita COVID-19 incidence and mortality. Specifically, the CDC measures for minority populations, CDC measures for limited English, and proportion of Black- and/or African-American individuals in a county were the most important features for per capita COVID-19 cases within a month after the pandemic started in a county and also at the latest date examined. For per capita all-cause mortality at day 100 and total to date, we find that public transportation use and proportion of Black- and/or African-American individuals in a county are the strongest predictors. The methods predict that, keeping all other factors fixed, a 10% increase in public transportation use, all other factors remaining fixed at the observed values, is associated with increases mortality at day 100 of 2012 individuals (95% CI [1972, 2356]) and likewise a 10% increase in the proportion of Black- and/or African-American individuals in a county is associated with increases total deaths at end of study of 2067 (95% CI [1189, 2654]). Using data until the end of study, the same metric suggests ethnicity has double the association as the next most important factors, which are location, disease prevalence, and transit factors. Our findings shed light on societal patterns that have been reported and experienced in the U.S. by using robust methods to understand the features most responsible for transmission and sectors of society most vulnerable to infection and mortality. In particular, our results provide evidence of the disproportionate impact of the COVID-19 pandemic on minority populations. Our results suggest that mitigation measures, including how vaccines are distributed, could have the greatest impact if they are given with priority to the highest risk communities. 
    more » « less
  2. Acharya, Binod (Ed.)
    This study compares pandemic experiences of Missouri’s 115 counties based on rurality and sociodemographic characteristics during the 1918–20 influenza and 2020–21 COVID-19 pandemics. The state’s counties and overall population distribution have remained relatively stable over the last century, which enables identification of long-lasting pandemic attributes. Sociodemographic data available at the county level for both time periods were taken from U.S. census data and used to create clusters of similar counties. Counties were also grouped by rural status (RSU), including fully (100%) rural, semirural (1–49% living in urban areas), and urban (>50% of the population living in urban areas). Deaths from 1918 through 1920 were collated from the Missouri Digital Heritage database and COVID-19 cases and deaths were downloaded from the Missouri COVID-19 dashboard. Results from sociodemographic analyses indicate that, during both time periods, average farm value, proportion White, and literacy were the most important determinants of sociodemographic clusters. Furthermore, the Urban/Central and Southeastern regions experienced higher mortality during both pandemics than did the North and South. Analyses comparing county groups by rurality indicated that throughout the 1918–20 influenza pandemic, urban counties had the highest and rural had the lowest mortality rates. Early in the 2020–21 COVID-19 pandemic, urban counties saw the most extensive epidemic spread and highest mortality, but as the epidemic progressed, cumulative mortality became highest in semirural counties. Additional results highlight the greater effects both pandemics had on county groups with lower rates of education and a lower proportion of Whites in the population. This was especially true for the far southeastern counties of Missouri (“the Bootheel”) during the COVID-19 pandemic. These results indicate that rural-urban and socioeconomic differences in health outcomes are long-standing problems that continue to be of significant importance, even though the overall quality of health care is substantially better in the 21 st century. 
    more » « less
  3. Kainz, W.; Manley, E.; Delmelle, E.; Birkin, M.; Gahegan, M.; Kwan, M-P. (Ed.)
    As of March 2021, the State of Florida, U.S.A. had accounted for approximately 6.67% of total COVID-19 (SARS-CoV-2 coronavirus disease) cases in the U.S. The main objective of this research is to analyze mobility patterns during a three month period in summer 2020, when COVID-19 case numbers were very high for three Florida counties, Miami-Dade, Broward, and Palm Beach counties. To investigate patterns, as well as drivers, related to changes in mobility across the tri-county region, a random forest regression model was built using sociodemographic, travel, and built environment factors, as well as COVID-19 positive case data. Mobility patterns declined in each county when new COVID-19 infections began to rise, beginning in mid-June 2020. While the mean number of bar and restaurant visits was lower overall due to closures, analysis showed that these visits remained a top factor that impacted mobility for all three counties, even with a rise in cases. Our modeling results suggest that there were mobility pattern differences between counties with respect to factors relating, for example, to race and ethnicity (different population groups factored differently in each county),as well as social distancing or travel-related factors (e.g., staying at home behaviors) over the two time periods prior to and after the spike of COVID-19 cases. 
    more » « less
  4. The spatial and temporal patterns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases and COVID-19 deaths in the United States are poorly understood. We show that variations in the cumulative reported cases and deaths by county, state, and date exemplify Taylor’s law of fluctuation scaling. Specifically, on day 1 of each month from April 2020 through June 2021, each state’s variance (across its counties) of cases is nearly proportional to its squared mean of cases. COVID-19 deaths behave similarly. The lower 99% of counts of cases and deaths across all counties are approximately lognormally distributed. Unexpectedly, the largest 1% of counts are approximately Pareto distributed, with a tail index that implies a finite mean and an infinite variance. We explain why the counts across the entire distribution conform to Taylor’s law with exponent two using models and mathematics. The finding of infinite variance has practical consequences. Local jurisdictions (counties, states, and countries) that are planning for prevention and care of largely unvaccinated populations should anticipate the rare but extremely high counts of cases and deaths that occur in distributions with infinite variance. Jurisdictions should prepare collaborative responses across boundaries, because extremely high local counts of cases and deaths may vary beyond the resources of any local jurisdiction. 
    more » « less
  5. Turner, Richard (Ed.)
    Background With the availability of multiple Coronavirus Disease 2019 (COVID-19) vaccines and the predicted shortages in supply for the near future, it is necessary to allocate vaccines in a manner that minimizes severe outcomes, particularly deaths. To date, vaccination strategies in the United States have focused on individual characteristics such as age and occupation. Here, we assess the utility of population-level health and socioeconomic indicators as additional criteria for geographical allocation of vaccines. Methods and findings County-level estimates of 14 indicators associated with COVID-19 mortality were extracted from public data sources. Effect estimates of the individual indicators were calculated with univariate models. Presence of spatial autocorrelation was established using Moran’s I statistic. Spatial simultaneous autoregressive (SAR) models that account for spatial autocorrelation in response and predictors were used to assess (i) the proportion of variance in county-level COVID-19 mortality that can explained by identified health/socioeconomic indicators (R 2 ); and (ii) effect estimates of each predictor. Adjusting for case rates, the selected indicators individually explain 24%–29% of the variability in mortality. Prevalence of chronic kidney disease and proportion of population residing in nursing homes have the highest R 2 . Mortality is estimated to increase by 43 per thousand residents (95% CI: 37–49; p < 0.001) with a 1% increase in the prevalence of chronic kidney disease and by 39 deaths per thousand (95% CI: 34–44; p < 0.001) with 1% increase in population living in nursing homes. SAR models using multiple health/socioeconomic indicators explain 43% of the variability in COVID-19 mortality in US counties, adjusting for case rates. R 2 was found to be not sensitive to the choice of SAR model form. Study limitations include the use of mortality rates that are not age standardized, a spatial adjacency matrix that does not capture human flows among counties, and insufficient accounting for interaction among predictors. Conclusions Significant spatial autocorrelation exists in COVID-19 mortality in the US, and population health/socioeconomic indicators account for a considerable variability in county-level mortality. In the context of vaccine rollout in the US and globally, national and subnational estimates of burden of disease could inform optimal geographical allocation of vaccines. 
    more » « less