skip to main content


Title: Integrating Magnetotelluric and Seismic Images of Silicic Magma Systems: A Case Study From the Laguna del Maule Volcanic Field, Central Chile
Abstract

Imaging silicic systems using geophysics is challenging because many interrelated factors (e.g., temperature, melt fraction, melt composition, geometry) can contribute to the measured geophysical anomaly. Joint interpretation of models from multiple geophysical methods can better constrain interpretations of the subsurface structure. Previously published resistivity and shear wave velocity (Vs) models, derived separately from magnetotelluric (MT) and surface wave seismic data, respectively, have been used to model the restless Laguna del Maule Volcanic Field, central Chile. The Vs model contains a 450 km3low‐velocity zone (LVZ) interpreted as a region with an average melt fraction of 5–6%. The resistivity model contains a conductor (C3) interpreted as a region with a melt fraction >35%. The spatial extents of the LVZ and C3 overlap, but the geometries and interpretations of these features are different. To resolve these discrepancies, this study investigates the resolution of the MT data using hypothesis testing and constrained MT inversions. It is shown that the MT data are best fit with discrete conductors embedded within the larger LVZ. The differences between the MT and seismic models reflect resolution differences between the two data sets as well as varying sensitivities to physical properties. The MT data are sensitive to smaller volumes of extractable mush that contain well‐connected crystal‐poor melt (C3). The seismic data have lower spatial resolution but image the full extent of the poorly connected crystal‐rich magma storage system. The combined images suggest that the LdMVF magma plumbing system is thermally heterogeneous with coexisting zones of warm and cold storage.

 
more » « less
NSF-PAR ID:
10420596
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
125
Issue:
11
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present electrical resistivity models of the crust and upper mantle from two‐dimensional (2‐D) inversion of magnetotelluric (MT) data collected in the Rio Grande rift, New Mexico, USA. Previous geophysical studies of the lithosphere beneath the rift identified a low‐velocity zone several hundred kilometers wide, suggesting that the upper mantle is characterized by a very broad zone of modified lithosphere. In contrast, the surface expression of the rift (e.g., high‐angle normal faults and synrift sedimentary units) is confined to a narrow region a few tens of kilometers wide about the rift axis. MT data are uniquely suited to probing the depths of the lithosphere that fill the gap between surface geology and body wave seismic tomography, namely the middle to lower crust and uppermost mantle. We model the electrical resistivity structure of the lithosphere along two east‐west trending profiles straddling the rift axis at the latitudes of 36.2 and 32.0°N. We present results from both isotropic and anisotropic 2‐D inversions of MT data along these profiles, with a strong preference for the latter in our interpretation. A key feature of the anisotropic resistivity modeling is a broad (~200‐km wide) zone of enhanced conductivity (<20 Ωm) in the middle to lower crust imaged beneath both profiles. We attribute this lower crustal conductor to the accumulation of free saline fluids and partial melt, a direct result of magmatic activity along the rift. High‐conductivity anomalies in the midcrust and upper mantle are interpreted as fault zone alteration and partial melt, respectively.

     
    more » « less
  2. Abstract

    Volcanic arcs consist of many distinct vents that are ultimately fueled by the common melting processes in the subduction zone mantle wedge. Seismic imaging of crustal‐scale magmatic systems can provide insight into how melt is organized in the deep crust and eventually focused beneath distinct vents as it ascends and evolves. Here, we investigate the crustal‐scale structure beneath a section of the Cascades arc spanning four major stratovolcanoes: Mt. Hood, Mt. St. Helens (MSH), Mt. Adams (MA), and Mt. Rainier, based on ambient noise data from 234 seismographs. Simultaneous inversion of Rayleigh and Love wave dispersion constrains the isotropic shear velocity (Vs) and identifies radially anisotropic structures. IsotropicVsshows two sub‐parallel low‐Vszones (∼3.45–3.55 km/s) at ∼15–30 km depth with one connecting Mt. Rainier to MA, and another connecting MSH to Mt. Hood, which are interpreted as deep crustal magma reservoirs containing up to ∼2.5%–6% melt, assuming near‐equilibrium melt geometry. Negative radial anisotropy, from vertical fractures like dikes, is prevalent in this part of the Cascadia, but is interrupted by positive radial anisotropy, from subhorizontal features like sills, extending vertically beneath MA and Mt. Rainier at ∼10–30 km depth and weaker and west‐dipping positive anisotropy beneath MSH. The positive anisotropy regions are adjacent to rather than co‐located with the isotropic low‐Vsanomalies. Ascending melt that stalled and mostly crystallized in sills with possible compositional differences from the country rock may explain the near‐averageVsand positive radial anisotropy adjacent to the active deep crustal magma reservoirs.

     
    more » « less
  3. Seismic imaging methods have provided detailed three-dimensional constraints on the physical properties of magmatic systems leading to invaluable insight into the storage, differentiation and dynamics of magma. These constraints have been crucial to the development of our modern understanding of magmatic systems. However, there are still outstanding knowledge gaps resulting from the challenges inherent in seismic imaging of volcanoes. These challenges stem from the complex physics of wave propagation across highly heterogeneous low-velocity anomalies associated with magma reservoirs. Ray-based seismic imaging methods such as travel-time and surface-wave tomography lead to under-recovery of such velocity anomalies and to under-estimation of melt fractions. This review aims to help the volcanologist to fully utilize the insights gained from seismic imaging and account for the resolution limits. We summarize the advantages and limitations of the most common imaging methods and propose best practices for their implementation and the quantitative interpretation of low-velocity anomalies. We constructed and analysed a database of 277 seismic imaging studies at 78 arc, hotspot and continental rift volcanoes. Each study is accompanied by information about the seismic source, part of the wavefield used, imaging method, any detected low-velocity zones, and estimated melt fraction. Thirty nine studies attempted to estimate melt fractions at 22 different volcanoes. Only five studies have found evidence of melt storage at melt fractions above the critical porosity that separates crystal mush from mobile magma. The median reported melt fraction is 13% suggesting that magma storage is dominated by low-melt fraction crystal mush. However, due to the limits of seismic resolution, the seismological evidence does not rule out the presence of small (<10 km 3 ) and medium-sized (<100 km 3 ) high-melt fraction magma chambers at many of the studied volcanoes. The combination of multiple tomographic imaging methods and the wider adoption of methods that use more of the seismic wavefield than the first arriving travel-times, promise to overcome some of the limitations of seismic tomography and provide more reliable constraints on melt fractions. Wider adoption of these new methods and advances in data collection are needed to enable a revolution in imaging magma reservoirs. 
    more » « less
  4. Abstract

    The Laguna del Maule (LdM) volcanic field comprises the greatest concentration of postglacial rhyolite in the Andes and includes the products of ~40 km3of explosive and effusive eruptions. Recent observations at LdM by interferometric synthetic aperture radar and global navigation satellite system geodesy have revealed inflation at rates exceeding 20 cm/year since 2007, capturing an ongoing period of growth of a potentially large upper crustal magma reservoir. Moreover, magnetotelluric and gravity studies indicate the presence of fluids and/or partial melt in the upper crust near the center of inflation. Petrologic observations imply repeated, rapid extraction of rhyolitic melt from crystal mush stored at depths of 4–6 km during at least the past 26 ka. We utilize multiple types of surface‐wave observations to constrain the location and geometry of low‐velocity domains beneath LdM. We present a three‐dimensional shear‐wave velocity model that delineates a ~450‐km3shallow magma reservoir ~2 to 8 km below surface with an average melt fraction of ~5%. Interpretation of the seismic tomography in light of existing gravity, magnetotelluric, and geodetic observations supports this model and reveals variations in melt content and a deeper magma system feeding the shallow reservoir in greater detail than any of the geophysical methods alone. Geophysical imaging of the LdM magma system today is consistent with the petrologic inferences of the reservoir structure and growth during the past 20–60 kyr. Taken together with the ongoing unrest, a future rhyolite eruption of at least the scale of those common during the Holocene is a reasonable possibility.

     
    more » « less
  5. Abstract

    The Baiyun slide complex contains geological evidence for some of the largest landslide ever discovered in the continental slopes of the South China Sea. High‐resolution seismic data suggest that a variety of landslides with varied scales have occurred repeatedly in this area. The largest landslide reconstructed from bathymetric and seismic data has an estimated spatial coverage of ~5,500 km2and a conservative volume of ~1,035 km3. Here, using geomorphological and geotechnical data, we construct a series of probable landslide scenarios and assess their tsunamigenic capacity. By treating the slides as deformable mudflows, we simulate the dynamics of landslide movements. The simulated landslide motions match the geophysical observations interpreted in previous studies. Particularly, we are able to reproduce the spatial distribution of observed runout, including the distance, shape, and deposit thickness, for the most credible slide scenario. We investigate tsunami impacts generated by different slide scenarios and highlight the importance of initial water depth, sliding direction, and nearshore bathymetry. The worst‐case scenario is capable of producing basin‐wide tsunami, with maximum wave amplitudes reaching ~5 m near Hong Kong and Macau, 1–3 m in western Philippines, and at least 1 m along central Vietnam, southeast Hainan, and southern Taiwan. The most noticeable phenomenon we observed is that the southern Chinese coast is the hardest‐hit region in all the simulated scenarios regardless of the diverse slide features. We conclude that the persistence of high tsunami impact is caused by the unique bathymetric feature of the wide continental shelf in front of southern China.

     
    more » « less