Abstract We develop new tools to analyze the complexity of the conjugacy equivalence relation , whenever is a left‐orderable group. Our methods are used to demonstrate nonsmoothness of for certain groups of dynamical origin, such as certain amalgams constructed from Thompson's group . We also initiate a systematic analysis of , where is a 3‐manifold. We prove that if is not prime, then is a universal countable Borel equivalence relation, and show that in certain cases the complexity of is bounded below by the complexity of the conjugacy equivalence relation arising from the fundamental group of each of the JSJ pieces of . We also prove that if is the complement of a nontrivial knot in then is not smooth, and show how determining smoothness of for all knot manifolds is related to the L‐space conjecture.
more »
« less
Regularity of viscosity solutions of the σk$\sigma _k$‐Loewner–Nirenberg problem
Abstract We study the regularity of the viscosity solution of the ‐Loewner–Nirenberg problem on a bounded smooth domain for . It was known that is locally Lipschitz in . We prove that, with being the distance function to and sufficiently small, is smooth in and the first derivatives of are Hölder continuous in . Moreover, we identify a boundary invariant which is a polynomial of the principal curvatures of and its covariant derivatives and vanishes if and only if is smooth in . Using a relation between the Schouten tensor of the ambient manifold and the mean curvature of a submanifold and related tools from geometric measure theory, we further prove that, when contains more than one connected components, is not differentiable in .
more »
« less
- Award ID(s):
- 2000261
- PAR ID:
- 10420786
- Publisher / Repository:
- Oxford University Press (OUP)
- Date Published:
- Journal Name:
- Proceedings of the London Mathematical Society
- Volume:
- 127
- Issue:
- 1
- ISSN:
- 0024-6115
- Format(s):
- Medium: X Size: p. 1-34
- Size(s):
- p. 1-34
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Curvature is a fundamental geometric characteristic of smooth spaces. In recent years different notions of curvature have been developed for combinatorial discrete objects such as graphs. However, the connections between such discrete notions of curvature and their smooth counterparts remain lurking and moot. In particular, it is not rigorously known if any notion of graph curvature converges to any traditional notion of curvature of smooth space. Here we prove that in proper settings the Ollivier–Ricci curvature of random geometric graphs in Riemannian manifolds converges to the Ricci curvature of the manifold. This is the first rigorous result linking curvature of random graphs to curvature of smooth spaces. Our results hold for different notions of graph distances, including the rescaled shortest path distance, and for different graph densities. Here the scaling of the average degree, as a function of the graph size, can range from nearly logarithmic to nearly linear.more » « less
-
Abstract We prove Ilmanen’s resolution of point singularities conjecture by establishing short-time smoothness of the level set flow of a smooth hypersurface with isolated conical singularities. This shows how the mean curvature flow evolves through asymptotically conical singularities. Precisely, we prove that the level set flow of a smooth hypersurface$$M^{n}\subset \mathbb{R}^{n+1}$$ ,$$2\leq n\leq 6$$ , with an isolated conical singularity is modeled on the level set flow of the cone. In particular, the flow fattens (instantaneously) if and only if the level set flow of the cone fattens.more » « less
-
Abstract In this paper we prove that there are finitely many modular curves that admit a smooth plane model. Moreover, if the degree of the model is greater than or equal to 19, no such curve exists. For modular curves of Shimura type we show that none can admit a smooth plane model of degree 5, 6 or 7. Further, if a modular curve of Shimura type admits a smooth plane model of degree 8 we show that it must be a twist of one of four curves.more » « less
-
Abstract Let$$\alpha \colon X \to Y$$be a finite cover of smooth curves. Beauville conjectured that the pushforward of a general vector bundle under$$\alpha $$is semistable if the genus ofYis at least$$1$$and stable if the genus ofYis at least$$2$$. We prove this conjecture if the map$$\alpha $$is general in any component of the Hurwitz space of covers of an arbitrary smooth curveY.more » « less
An official website of the United States government
