Abstract We study holomorphic mapsFfrom a smooth Levi non-degenerate real hypersurface$$ M_{\ell }\subset {\mathbb {C}}^n $$ into a hyperquadric$$ {\mathbb {H}}_{\ell '}^N $$ with signatures$$ \ell \le (n-1)/2 $$ and$$ \ell '\le (N-1)/2,$$ respectively. Assuming that$$ N - n < n - 1,$$ we prove that if$$ \ell = \ell ',$$ thenFis either CR transversal to$$ {\mathbb {H}}_{\ell }^N $$ at every point of$$ M_{\ell },$$ or it maps a neighborhood of$$ M_{\ell } $$ in$$ {\mathbb {C}}^n $$ into$$ {\mathbb {H}}_{\ell }^N.$$ Furthermore, in the case where$$ \ell ' > \ell ,$$ we show that ifFis not CR transversal at$$0\in M_\ell ,$$ then it must be transversally flat. The latter is best possible.
more »
« less
This content will become publicly available on December 1, 2025
Mean curvature flow from conical singularities
Abstract We prove Ilmanen’s resolution of point singularities conjecture by establishing short-time smoothness of the level set flow of a smooth hypersurface with isolated conical singularities. This shows how the mean curvature flow evolves through asymptotically conical singularities. Precisely, we prove that the level set flow of a smooth hypersurface$$M^{n}\subset \mathbb{R}^{n+1}$$ ,$$2\leq n\leq 6$$ , with an isolated conical singularity is modeled on the level set flow of the cone. In particular, the flow fattens (instantaneously) if and only if the level set flow of the cone fattens.
more »
« less
- Award ID(s):
- 2304432
- PAR ID:
- 10596344
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 238
- Issue:
- 3
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 1041 to 1066
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ , and$$x\in \mathbb{R}^{n+1}$$ ,$$r>0$$ , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ where the infimum is taken over all open affine half-spaces$$H^{+}$$ such that$$x \in \partial H^{+}$$ and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ is$$n$$ -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ ,$$\Omega ^{-}$$ are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ and$$r>0$$ , we denote by$$\alpha ^{\pm }(x,r)$$ the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ . We show that, up to a set of$$\mathcal{H}^{n}$$ measure zero,$$x$$ is a tangent point for both$$\partial \Omega ^{+}$$ and$$\partial \Omega ^{-}$$ if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ conjecture of Carleson.more » « less
-
Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ in$$U\subset \mathbf {R}^{2+n}$$ with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ , where$$Q\in \mathbf {N} \setminus \{0\}$$ and$$\Gamma $$ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ is a point where the density of$$T$$ is strictly below$$\frac{Q+1}{2}$$ , then the current is regular at$$q$$ . The regularity is understood in the following sense: there is a neighborhood of$$q$$ in which$$T$$ consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ is regular in a neighborhood of $$\Gamma $$ .more » « less
-
Abstract We show that the mean curvature flow of generic closed surfaces in$$\mathbb{R}^{3}$$ avoids asymptotically conical and non-spherical compact singularities. We also show that the mean curvature flow of generic closed low-entropy hypersurfaces in$$\mathbb{R}^{4}$$ is smooth until it disappears in a round point. The main technical ingredient is a long-time existence and uniqueness result for ancient mean curvature flows that lie on one side of asymptotically conical or compact shrinking solitons.more » « less
-
Abstract While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in$$\mathbb {R}^n$$ . In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension$$n=1$$ . In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition$$(\mathcal {G},\beta )$$ and nonempty sets$$A_1,\dots ,A_m\subseteq \mathbb {R}$$ , equality holds iff for each$$S\in \mathcal {G}$$ , the set$$\sum _{i\in S}A_i$$ is an interval. In the case of dimension$$n\ge 2$$ we will show that equality can hold if and only if the set$$\sum _{i=1}^{m}A_i$$ has measure 0.more » « less
An official website of the United States government
