skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Clustering multivariate time series using energy distance
A novel methodology is proposed for clustering multivariate time series data using energy distance defined in Székely and Rizzo (2013). Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure the separation between the finite‐dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. The method is illustrated in a simulation study for various component time series that are either linear or nonlinear. Finally, the methodology is applied to two examples; one involves the GDP of selected countries and the other is the population size of various states in the U.S.A. in the years 1900–1999.  more » « less
Award ID(s):
2015379
PAR ID:
10420820
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Time Series Analysis
ISSN:
0143-9782
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper introduces kdiff, a novel kernel-based measure for estimating distances between instances of time series, random fields and other forms of structured data. This measure is based on the idea of matching distributions that only overlap over a portion of their region of support. Our proposed measure is inspired by MPdist which has been previously proposed for such datasets and is constructed using Euclidean metrics, whereas kdiff is constructed using non-linear kernel distances. Also, kdiff accounts for both self and cross similarities across the instances and is defined using a lower quantile of the distance distribution. Comparing the cross similarity to self similarity allows for measures of similarity that are more robust to noise and partial occlusions of the relevant signals. Our proposed measure kdiff is a more general form of the well known kernel-based Maximum Mean Discrepancy distance estimated over the embeddings. Some theoretical results are provided for separability conditions using kdiff as a distance measure for clustering and classification problems where the embedding distributions can be modeled as two component mixtures. Applications are demonstrated for clustering of synthetic and real-life time series and image data, and the performance of kdiff is compared to competing distance measures for clustering. 
    more » « less
  2. Introduction: Essential genes are essential for the survival of various species. These genes are a family linked to critical cellular activities for species survival. These genes are coded for proteins that regulate central metabolism, gene translation, deoxyribonucleic acid replication, and fundamental cellular structure and facilitate intracellular and extracellular transport. Essential genes preserve crucial genomics information that may hold the key to a detailed knowledge of life and evolution. Essential gene studies have long been regarded as a vital topic in computational biology due to their relevance. An essential gene is composed of adenine, guanine, cytosine, and thymine and its various combinations. Methods: This paper presents a novel method of extracting information on the stationary patterns of nucleotides such as adenine, guanine, cytosine, and thymine in each gene. For this purpose, some co-occurrence matrices are derived that provide the statistical distribution of stationary patterns of nucleotides in the genes, which is helpful in establishing the relationship between the nucleotides. For extracting discriminant features from each co-occurrence matrix, energy, entropy, homogeneity, contrast, and dissimilarity features are computed, which are extracted from all co-occurrence matrices and then concatenated to form a feature vector representing each essential gene. Finally, supervised machine learning algorithms are applied for essential gene classification based on the extracted fixed-dimensional feature vectors. Results: For comparison, some existing state-of-the-art feature representation techniques such as Shannon entropy (SE), Hurst exponent (HE), fractal dimension (FD), and their combinations have been utilized. Discussion: An extensive experiment has been performed for classifying the essential genes of five species that show the robustness and effectiveness of the proposed methodology. 
    more » « less
  3. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary multivariate Gaussian time series. In a time series graph, each component of the vector series is represented by distinct node, and associations between components are represented by edges between the corresponding nodes. We formulate the problem as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. We present an alternating direction method of multipliers (ADMM) solution to minimize a sparse-group lasso penalized negative pseudo log-likelihood objective function to estimate the precision matrix of the random vector associated with the entire multi-attribute graph. The time series CIG is then inferred from the estimated precision matrix. A theoretical analysis is provided. Numerical results illustrate the proposed approach which outperforms existing frequency-domain approaches in correctly detecting the graph edges. 
    more » « less
  4. Clustering is a fundamental tool for exploratory data analysis. One central problem in clustering is deciding if the clusters discovered by clustering methods are reliable as opposed to being artifacts of natural sampling variation. Statistical significance of clustering (SigClust) is a recently developed cluster evaluation tool for high-dimension, low-sample size data. Despite its successful application to many scientific problems, there are cases where the original SigClust may not work well. Furthermore, for specific applications, researchers may not have access to the original data and only have the dissimilarity matrix. In this case, clustering is still a valuable exploratory tool, but the original SigClust is not applicable. To address these issues, we propose a new SigClust method using multidimensional scaling (MDS). The underlying idea behind MDS-based SigClust is that one can achieve low-dimensional representations of the original data via MDS using only the dissimilarity matrix and then apply SigClust on the low-dimensional MDS space. The proposed MDS-based SigClust can circumvent the challenge of parameter estimation of the original method in high-dimensional spaces while keeping the essential clustering structure in the MDS space. Both simulations and real data applications demonstrate that the proposed method works remarkably well for assessing the statistical significance of clustering. Supplementary materials for this article are available online. 
    more » « less
  5. For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues. 
    more » « less