skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Minimizing running buffers for tabletop object rearrangement: Complexity, fast algorithms, and applications
For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces, or “running buffers,” are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance and show that computing MRB is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases. We further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimic real-world setups generally have fairly small MRBs. Using real robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions for the in-place rearrangement of many objects in a tight, bounded workspace.  more » « less
Award ID(s):
1845888 2132972
PAR ID:
10421035
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
SAGE Publications
Date Published:
Journal Name:
The International Journal of Robotics Research
Volume:
42
Issue:
10
ISSN:
0278-3649
Format(s):
Medium: X Size: p. 755-776
Size(s):
p. 755-776
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    For tabletop object rearrangement problems with overhand grasps, storage space which may be inside or outside the tabletop workspace, or running buffers, can temporarily hold objects which greatly facilitates the resolution of a given rearrangement task. This brings forth the natural question of how many running buffers are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both the labeled (where each object has a specific goal pose) and the unlabeled (where goal poses of objects are interchangeable) settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance, and show that computing MRB on dependency graphs is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases; we further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop highly effective, exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimics real-world setups, generally have fairly small MRBs. 
    more » « less
  2. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a ``region graph'', which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFSDP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFSDP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less
  3. null (Ed.)
    Object rearrangement is a widely-applicable and challenging task for robots. Geometric constraints must be carefully examined to avoid collisions and combinatorial issues arise as the number of objects increases. This work studies the algorithmic structure of rearranging uniform objects, where robot-object collisions do not occur but object-object collisions have to be avoided. The objective is minimizing the number of object transfers under the assumption that the robot can manipulate one object at a time. An efficiently computable decomposition of the configuration space is used to create a “region graph”, which classifies all continuous paths of equivalent collision possibilities. Based on this compact but rich representation, a complete dynamic programming primitive DFS DP performs a recursive depth first search to solve monotone problems quickly, i.e., those instances that do not require objects to be moved first to an intermediate buffer. DFS DP is extended to solve single-buffer, non-monotone instances, given a choice of an object and a buffer. This work utilizes these primitives as local planners in an informed search framework for more general, non-monotone instances. The search utilizes partial solutions from the primitives to identify the most promising choice of objects and buffers. Experiments demonstrate that the proposed solution returns near-optimal paths with higher success rate, even for challenging non-monotone instances, than other leading alternatives. 
    more » « less
  4. We study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully-labeled, where each item has a unique label, or partially-labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following-based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher-dimensional lattices become computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following-based algorithms remain optimal in the asymptotic sense for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1. x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms. The implementation of the algorithms from the paper can be found at github.com/arc-l/lattice-rearrangement. 
    more » « less
  5. Cutting-edge machine learning techniques often require millions of labeled data objects to train a robust model. Because relying on humans to supply such a huge number of labels is rarely practical, automated methods for label generation are needed. Unfortunately, critical challenges in auto-labeling remain unsolved, including the following research questions: (1) which objects to ask humans to label, (2) how to automatically propagate labels to other objects, and (3) when to stop labeling. These three questions are not only each challenging in their own right, but they also correspond to tightly interdependent problems. Yet existing techniques provide at best isolated solutions to a subset of these challenges. In this work, we propose the first approach, called LANCET, that successfully addresses all three challenges in an integrated framework. LANCET is based on a theoretical foundation characterizing the properties that the labeled dataset must satisfy to train an effective prediction model, namely the Covariate-shift and the Continuity conditions. First, guided by the Covariate-shift condition, LANCET maps raw input data into a semantic feature space, where an unlabeled object is expected to share the same label with its near-by labeled neighbor. Next, guided by the Continuity condition, LANCET selects objects for labeling, aiming to ensure that unlabeled objects always have some sufficiently close labeled neighbors. These two strategies jointly maximize the accuracy of the automatically produced labels and the prediction accuracy of the machine learning models trained on these labels. Lastly, LANCET uses a distribution matching network to verify whether both the Covariate-shift and Continuity conditions hold, in which case it would be safe to terminate the labeling process. Our experiments on diverse public data sets demonstrate that LANCET consistently outperforms the state-of-the-art methods from Snuba to GOGGLES and other baselines by a large margin - up to 30 percentage points increase in accuracy. 
    more » « less