Multi-Agent Path Finding (MAPF) is NP-hard to solve optimally, even on graphs, suggesting no polynomial-time algorithms can compute exact optimal solutions for them. This raises a natural question: How optimal can polynomial-time algorithms reach? Whereas algorithms for computing constant-factor optimal solutions have been developed, the constant factor is generally very large, limiting their application potential. In this work, among other breakthroughs, we propose the first low-polynomial-time MAPF algorithms delivering 1-1.5 (resp., 1-1.67) asymptotic makespan optimality guarantees for 2D (resp., 3D) grids for random instances at a very high 1/3 agent density, with high probability. Moreover, when regularly distributed obstacles are introduced, our methods experience no performance degradation. These methods generalize to support 100% agent density.Regardless of the dimensionality and density, our high-quality methods are enabled by a unique hierarchical integration of two key building blocks. At the higher level, we apply the labeled Grid Rearrangement Algorithm (GRA), capable of performing efficient reconfiguration on grids through row/column shuffles. At the lower level, we devise novel methods that efficiently simulate row/column shuffles returned by GRA. Our implementations of GRA-based algorithms are highly effective in extensive numerical evaluations, demonstrating excellent scalability compared to other SOTA methods. For example, in 3D settings, GRA-based algorithms readily scale to grids with over 370,000 vertices and over 120,000 agents and consistently achieve conservative makespan optimality approaching 1.5, as predicted by our theoretical analysis. 
                        more » 
                        « less   
                    
                            
                            Rearrangement on lattices with pick-n-swaps: Optimality structures and efficient algorithms
                        
                    
    
            We study a class of rearrangement problems under a novel pick-n-swap prehensile manipulation model, in which a robotic manipulator, capable of carrying an item and making item swaps, is tasked to sort items stored in lattices of variable dimensions in a time-optimal manner. We systematically analyze the intrinsic optimality structure, which is fairly rich and intriguing, under different levels of item distinguishability (fully-labeled, where each item has a unique label, or partially-labeled, where multiple items may be of the same type) and different lattice dimensions. Focusing on the most practical setting of one and two dimensions, we develop low polynomial time cycle-following-based algorithms that optimally perform rearrangements on 1D lattices under both fully- and partially-labeled settings. On the other hand, we show that rearrangement on 2D and higher-dimensional lattices become computationally intractable to optimally solve. Despite their NP-hardness, we prove that efficient cycle-following-based algorithms remain optimal in the asymptotic sense for 2D fully- and partially-labeled settings, in expectation, using the interesting fact that random permutations induce only a small number of cycles. We further improve these algorithms to provide 1. x-optimality when the number of items is small. Simulation studies corroborate the effectiveness of our algorithms. The implementation of the algorithms from the paper can be found at github.com/arc-l/lattice-rearrangement. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10493879
- Publisher / Repository:
- Sage Journals
- Date Published:
- Journal Name:
- The International Journal of Robotics Research
- Volume:
- 42
- Issue:
- 10
- ISSN:
- 0278-3649
- Page Range / eLocation ID:
- 957 to 973
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            For rearranging objects on tabletops with overhand grasps, temporarily relocating objects to some buffer space may be necessary. This raises the natural question of how many simultaneous storage spaces, or “running buffers,” are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both labeled and unlabeled settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance and show that computing MRB is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases. We further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop effective exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimic real-world setups generally have fairly small MRBs. Using real robot experiments, we demonstrate that the running buffer abstraction leads to state-of-the-art solutions for the in-place rearrangement of many objects in a tight, bounded workspace.more » « less
- 
            null (Ed.)For tabletop object rearrangement problems with overhand grasps, storage space which may be inside or outside the tabletop workspace, or running buffers, can temporarily hold objects which greatly facilitates the resolution of a given rearrangement task. This brings forth the natural question of how many running buffers are required so that certain classes of tabletop rearrangement problems are feasible. In this work, we examine the problem for both the labeled (where each object has a specific goal pose) and the unlabeled (where goal poses of objects are interchangeable) settings. On the structural side, we observe that finding the minimum number of running buffers (MRB) can be carried out on a dependency graph abstracted from a problem instance, and show that computing MRB on dependency graphs is NP-hard. We then prove that under both labeled and unlabeled settings, even for uniform cylindrical objects, the number of required running buffers may grow unbounded as the number of objects to be rearranged increases; we further show that the bound for the unlabeled case is tight. On the algorithmic side, we develop highly effective, exact algorithms for finding MRB for both labeled and unlabeled tabletop rearrangement problems, scalable to over a hundred objects under very high object density. More importantly, our algorithms also compute a sequence witnessing the computed MRB that can be used for solving object rearrangement tasks. Employing these algorithms, empirical evaluations reveal that random labeled and unlabeled instances, which more closely mimics real-world setups, generally have fairly small MRBs.more » « less
- 
            Abstract In group testing, the goal is to identify a subset of defective items within a larger set of items based on tests whose outcomes indicate whether at least one defective item is present. This problem is relevant in areas such as medical testing, DNA sequencing, communication protocols and many more. In this paper, we study (i) a sparsity-constrained version of the problem, in which the testing procedure is subjected to one of the following two constraints: items are finitely divisible and thus may participate in at most $$\gamma $$ tests; or tests are size-constrained to pool no more than $$\rho $$ items per test; and (ii) a noisy version of the problem, where each test outcome is independently flipped with some constant probability. Under each of these settings, considering the for-each recovery guarantee with asymptotically vanishing error probability, we introduce a fast splitting algorithm and establish its near-optimality not only in terms of the number of tests, but also in terms of the decoding time. While the most basic formulations of our algorithms require $$\varOmega (n)$$ storage for each algorithm, we also provide low-storage variants based on hashing, with similar recovery guarantees.more » « less
- 
            Selecting the best items in a dataset is a common task in data exploration. However, the concept of “best” lies in the eyes of the beholder: different users may consider different attributes more important and, hence, arrive at different rankings. Nevertheless, one can remove “dominated” items and create a “representative” subset of the data, comprising the “best items” in it. A Pareto-optimal representative is guaranteed to contain the best item of each possible ranking, but it can be a large portion of data. A much smaller representative can be found if we relax the requirement of including the best item for each user and, instead, just limit the users’ “regret”. Existing work defines regret as the loss in score by limiting consideration to the representative instead of the full dataset, for any chosen ranking function. However, the score is often not a meaningful number, and users may not understand its absolute value. Sometimes small ranges in score can include large fractions of the dataset. In contrast, users do understand the notion of rank ordering. Therefore, we consider items’ positions in the ranked list in defining the regret and propose the rank-regret representative as the minimal subset of the data containing at least one of the top-k of any possible ranking function. This problem is polynomial time solvable in 2D space but is NP-hard on 3 or more dimensions. We design a suite of algorithms to fulfill different purposes, such as whether relaxation is permitted on k, the result size, or both, whether a distribution is known, whether theoretical guarantees or practical efficiency is important, etc. Experiments on real datasets demonstrate that we can efficiently find small subsets with small rank-regrets.more » « less
 An official website of the United States government
An official website of the United States government 
				
			
 
                                    