skip to main content


Title: The life history of human foraging: Cross-cultural and individual variation
Human adaptation depends on the integration of slow life history, complex production skills, and extensive sociality. Refining and testing models of the evolution of human life history and cultural learning benefit from increasingly accurate measurement of knowledge, skills, and rates of production with age. We pursue this goal by inferring hunters’ increases and declines of skill from approximately 23,000 hunting records generated by more than 1800 individuals at 40 locations. The data reveal an average age of peak productivity between 30 and 35 years of age, although high skill is maintained throughout much of adulthood. In addition, there is substantial variation both among individuals and sites. Within study sites, variation among individuals depends more on heterogeneity in rates of decline than in rates of increase. This analysis sharpens questions about the coevolution of human life history and cultural adaptation.  more » « less
Award ID(s):
1534548
PAR ID:
10421150
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Science Advances
Volume:
6
Issue:
26
ISSN:
2375-2548
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Because foundation species create structure in a community, understanding their ecological and evolutionary responses to global change is critical for predicting the ecological and economic management of species and communities that rely on them. Giant kelp (Macrocystis pyrifera) is a globally distributed foundation species with seasonal fluctuations in abundance in response to local nutrient levels, storm intensity, and ocean temperatures. Here we examine genetic variation in individual and population‐level responses of early life history stages (zoospore settlement, survival, and gametogenesis) to increased temperatures to determine the potential for natural selection on temperature‐tolerant individuals that would allow adaptation to a changing climate. We collected fertileM. pyriferasporophyll blades from three sites along the California coast (Los Angeles, Santa Barbara, Monterey Bay) and induced zoospore release in the lab. Spores settled on microscope slides at three treatment temperatures (16, 20, and 22°C), matured for 21 days, and were imaged weekly to determine settlement, survival, and maturation success. On average, individuals from all sites showed lower rates of settlement and maturation in response to increasing temperature. However, the magnitude of the responses to temperature varied among populations. Survival tended to increase with temperature in Los Angeles and Santa Barbara populations but decreased with increasing temperature for the Monterey Bay population. We observed little genetic variation in temperature responses among individuals within sites, suggesting little scope for evolution within populations to increase the resilience ofM. pyriferapopulations to warming ocean temperatures and predicted declines in kelp abundance. Yet sufficient dispersal among populations could allow for adaptation of early life history traits among populations via evolutionary rescue of declining populations.

     
    more » « less
  2. Abstract

    Life history theories analyze and predict variation in vital rates, such as survival and reproduction, based on age. The age‐from‐stage method to derive age‐specific vital rates from stage data was developed because age‐specific data are rarely obtained for plants. Age‐specific vital rates derived by this method might underestimate effects of age on vital rates, because the models assume that vital rates do not vary within stage classes. Consequently, population models and life history summaries relying on these vital rates could be biased against detecting senescence. Here, we perform a comparative study of methods to estimate age‐specific vital rates using monitoring data with known age and stage. We derived age‐, stage‐, and age‐and‐stage‐specific vital rates with demographic data from a long‐lived perennial,Silene spaldingii. Then, we derived three age‐specific population matrix models (age, age‐from‐stage, and age‐and‐stage). For each model, we derived life history summaries commonly used in ecology: population growth rate, net reproductive value, relative reproductive values, stable age distribution, generation time, and sensitivity and elasticity of population growth rate. Many vital rates depended on both age and stage inS. spaldingii. However, this species does not senesce; in fact, the number of flowers increased with age. As expected, the age‐from‐stage method was not able to accurately recreate the age dependence in some life history summaries, such as relative reproductive value. The age‐from‐stage model suggested faster reproductive dynamics inS. spaldingiithan the models based on known age, i.e., plants started to reproduce earlier, and fertility remained constant thereafter, which may lead to biased predictions about evolutionary consequences of age‐dependent life history traits. However, population growth rate, generation time, and net reproductive rate did not differ significantly among the models. Our study demonstrated that some metrics are robust to imprecision in model structure, while others are more sensitive. In spite of these biases, this case study provides another example of the diversity of aging patterns in plants. Age can be essential information when studying senescence in plants, but demographic metrics that were not about age per se were similar across model structures.

     
    more » « less
  3. Abstract

    Individuals differ in many ways. Most produce few offspring; a handful produce many. Some die early; others live to old age. It is tempting to attribute these differences in outcomes to differences in individual traits, and thus in the demographic rates experienced. However, there is more to individual variation than meets the eye of the biologist. Even among individuals sharing identical traits, life history outcomes (life expectancy and lifetime reproduction) will vary due to individual stochasticity, that is to chance. Quantifying the contributions of heterogeneity and chance is essential to understand natural variability. Interindividual differences vary across environmental conditions, hence heterogeneity and stochasticity depend on environmental conditions. We show that favourable conditions increase the contributions of individual stochasticity, and reduce the contributions of heterogeneity, to variance in demographic outcomes in a seabird population. The opposite is true under poor conditions. This result has important consequence for understanding the ecology and evolution of life history strategies.

     
    more » « less
  4. Abstract

    Variation in life‐history traits can have major impacts on the ecological and evolutionary responses of populations to environmental change. Life‐history variation often results from trade‐offs that arise because individuals have a limited pool of resources to allocate among traits. However, human activities are increasing the availability of many once‐limited resources, such as nitrogen and phosphorus, with potentially major implications for the expression and evolution of life‐history trade‐offs. In this review, we synthesize contemporary life history and sexual selection literature with current research on ecosystem nutrient cycling to highlight novel opportunities presented by anthropogenic environmental change for investigating life‐history trait development and evolution. Specifically, we review four areas where nutrition plays a pivotal role in life‐history evolution and explore possible implications in the face of rapid, human‐induced change in nutrient availability. For example, increases in the availability of nutrients may relax historical life‐history trade‐offs and reduce the honesty of signaling systems. We argue that ecosystems experiencing anthropogenic nutrient inputs present a powerful yet underexplored arena for testing novel and longstanding questions in organismal life‐history evolution.

     
    more » « less
  5. Abstract

    Ongoing changes in fire regimes have the potential to drive widespread shifts in Earth's vegetation. Plant traits and vital rates provide insight into vulnerability to fire‐driven vegetation shifts because they can be indicators of the ability of individuals to survive fire (resistance) and populations to persist (resilience) following fire.

    In 15 study sites spanning climatic gradients in the southern Rocky Mountains, USA, we quantified variation in key traits and vital rates of two co‐occurring, widely distributed conifers (Pinus ponderosaDouglas ex. P. Lawson & C. Lawson andPseudotsuga menziesii(Mirb.) Franco). We used mixed‐effects models to explain inter‐ and intraspecific variation in tree growth, survival, bark thickness and seed cone production, as a function of species, tree life stage (i.e. diameter, height and age), average climate, local competition and site conditions.

    Pinus ponderosawas predicted to survive low‐severity fire at a 23% earlier age thanP. menziesii.Pinus ponderosahad thicker bark and more rapid juvenile height growth, traits conferring greater fire resistance. In contrast,P. menziesiiwas predicted to produce seed cones at a 28% earlier age thanP. ponderosa. For both species, larger individuals were more likely to survive fire and to produce cones. ForP. ponderosa, cone production increased where average actual evapotranspiration (AET) was higher and local competition was lower. More frequent cone production on productive sites with higher AET is an important and underappreciated mechanism that may help to explain greater resilience to fire in these areas.

    Synthesis. Our analyses indicated that many plant traits and vital rates related to fire differed betweenPinus ponderosaandPseudotsuga menziesii, with trade‐offs between investment in traits that promote individual defence to fire and those that promote recolonization of disturbed sites. Future changes in fire regimes will act as a filter throughout North American forests, with our findings helping to infer which individuals and populations of two iconic species are most vulnerable to future change and offering a framework for future inquiry in other forests facing an uncertain future.

     
    more » « less