skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Assisted migration experiments along a distance/elevation gradient show limits to supporting home site communities
We addressed the hypothesis that intraspecific genetic variation in plant traits from different sites along a distance/elevation gradient would influence the communities they support when grown at a new site. Answers to this hypothesis are important when considering the community consequences of assisted migration under climate change; i.e., if you build it will they come?. We surveyed arthropod communities occurring on the foundation riparian tree species Populus angustifolia along a distance/elevation gradient and in a common garden where trees from along the gradient were planted 20–22 years earlier. Three major patterns were found: 1) In the wild, arthropod community composition changed significantly. Trees at the lower elevation site supported up to 58% greater arthropod abundance and 26% greater species richness than more distant, high elevation trees. 2) Trees grown in a common garden sourced from the same locations along the gradient, supported arthropod communities more similar to their corresponding wild trees, but the similarity declined with transfer distance and elevation. 3) Of five functional traits examined, leaf area, a trait under genetic control that decreases at higher elevations, is correlated with differences in arthropod species richness and abundance. Our results suggest that genetic differences in functional traits are stronger drivers of arthropod community composition than phenotypic plasticity of plant traits due to environmental factors. We also show that variation in leaf area is maintained and has similar effects at the community level while controlling for environment. These results demonstrate how genetically based traits vary across natural gradients and have community-level effects that are maintained, in part, when they are used in assisted migration. Furthermore, optimal transfer distances for plants suffering from climate change may not be the same as optimal transfer distances for their dependent communities.  more » « less
Award ID(s):
2017877
PAR ID:
10421184
Author(s) / Creator(s):
; ;
Editor(s):
Ahmed, Ferdous
Date Published:
Journal Name:
PLOS Climate
Volume:
2
Issue:
5
ISSN:
2767-3200
Page Range / eLocation ID:
e0000137
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Although genetic diversity within stands of trees is known to have community-level consequences, whether such effects are present at an even finer genetic scale is unknown. We examined the hypothesis that genetic variability (heterozygosity) within an individual plant would affect its dependent community, which adds a new dimension to the importance of genetic diversity. Our study contrasted foliar arthropod community diversity and microsatellite marker-derived measures of genetic diversity of cottonwood (Populus fremontii) trees that had been felled by beavers (Castor canadensis) and were resprouting, relative to adjacent standing, unfelled trees. Three patterns emerged: 1. Productivity (specific leaf area), phytochemical defenses (salicortin), and arthropod community richness, abundance, and diversity were positively correlated with the heterozygosity of individual felled trees, but not with that of unfelled trees; 2. These relationships were not explained by population substructure, genetic relatedness of the trees, or hybridization; 3. The underlying mechanism appears to be that beaver herbivory stimulates increased productivity (i.e., 2× increase from the most homozygous to the most heterozygous tree) that is the greatest in more heterozygous trees. Salicortin defenses in twigs were also expressed at higher concentrations in more heterozygous trees (i.e., 3× increase from the most homozygous to the most heterozygous tree), which suggests that this compound may dissuade further herbivory by beavers, as has been found for other mammalian herbivores. We suggest that high stress to trees as a consequence of felling reveals a heterozygosity–productivity linkage, which in turn is attractive to arthropods. Although experiments are required to demonstrate causality, these results link the genetic diversity of individual trees to community diversity, supporting the hypothesis that interactions among foundation species (beavers and trees) have community-level effects, and underscores the importance of genetic diversity for biodiversity, conservation, and restoration. 
    more » « less
  2. Abstract Climate change is threatening the persistence of many tree species via independent and interactive effects on abiotic and biotic conditions. In addition, changes in temperature, precipitation, and insect attacks can alter the traits of these trees, disrupting communities and ecosystems. For foundation species such asPopulus, phytochemical traits are key mechanisms linking trees with their environment and are likely jointly determined by interactive effects of genetic divergence and variable environments throughout their geographic range. Using reciprocal Fremont cottonwood (Populus fremontii) common gardens along a steep climatic gradient, we explored how environment (garden climate and simulated herbivore damage) and genetics (tree provenance and genotype) affect both foliar chemical traits and the plasticity of these traits. We found that (1) Constitutive and plastic chemical responses to changes in garden climate and damage varied among defense compounds, structural compounds, and leaf nitrogen. (2) For both defense and structural compounds, plastic responses to different garden climates depended on the climate in which a population or genotype originated. Specifically, trees originating from cool provenances showed higher defense plasticity in response to climate changes than trees from warmer provenances. (3) Trees from cool provenances growing in cool garden conditions expressed the lowest constitutive defense levels but the strongest induced (plastic) defenses in response to damage. (4) The combination of hot garden conditions and simulated herbivory switched the strategy used by these genotypes, increasing constitutive defenses but erasing the capacity for induction after damage. Because Fremont cottonwood chemistry plays a major role in shaping riparian communities and ecosystems, the effects of changes in phytochemical traits can be wide reaching. As the southwestern US is confronted with warming temperatures and insect outbreaks, these results improve our capacity to predict ecosystem consequences of climate change and inform selection of tree genotypes for conservation and restoration purposes. 
    more » « less
  3. Abstract Developing systematic conservation plans depends on a wealth of information on a region's biodiversity. For ‘dark taxa' such as arthropods, such data are usually very incomplete and in most cases left out from assessments.Sky islands are important and often fragile biodiversity hotspots. Southern Appalachian high‐elevation spruce–fir forests represent a particularly threatened sky‐island ecosystem, hosting numerous endemic and threatened species, but their arthropods remain understudied.Here we use voucher‐based megabarcoding to explore genetic differentiation among leaf‐litter arthropod communities of these highlands, and to examine the extent to which they represent dispersed communities of more or less coherent species, manageable as a distributed unit. We assembled a dataset comprising more than 6000 COI sequences representing diverse arthropod groups to assess species richness and sharing across peaks and ranges. Comparisons were standardised across taxa using automated species delimitation, measuring endemism levels by putative species.Species richness was high, with sites hosting from 86 to 199 litter arthropod species (not including mites or myriapods). Community profiles suggest that around one fourth of these species are unique to single sky islands and more than one third of all species are limited to a particular range. Across major taxa, endemicity was lowest in Araneae, and highest in neglected groups like Isopoda, Pseudoscorpionida, Protura and Diplura.Southern Appalachian sky islands of spruce–fir habitat host significantly distinct leaf‐litter arthropod communities, with high levels of local endemicity. This is the first work to provide such a clear picture of peak and range uniqueness for a taxonomically broad sample. Ensuring the protection of a sizeable fraction of high‐elevation litter species richness will therefore require attention at a relatively fine spatial scale. 
    more » « less
  4. Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern US, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12oC temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less
  5. Abstract Efforts to maintain the function of critical ecosystems under climate change often begin with foundation species. In the southwestern United States, cottonwood trees support diverse communities in riparian ecosystems that are threatened by rising temperatures. Genetic variation within cottonwoods shapes communities and ecosystems, but these effects may be modified by phenotypic plasticity, where genotype traits change in response to environmental conditions. Here, we investigated plasticity in Fremont cottonwood (Populus fremontii) leaf litter traits as well as the consequences of plasticity for riparian ecosystems. We used three common gardens each planted with genotypes from six genetically divergent populations spanning a 12°C temperature gradient, and a decomposition experiment in a common stream environment. We found that leaf litter area, specific leaf area, and carbon to nitrogen ratio (C:N) were determined by interactions between genetics and growing environment, as was the subsequent rate of litter decomposition. Most of the genetic variation in leaf litter traits appeared among rather than within source populations with distinct climate histories. Source populations from hotter climates generally produced litter that decomposed more quickly, but plasticity varied the magnitude of this effect. We also found that hotter growing conditions reduced the variation in litter traits produced across genotypes, homogenizing the litter inputs to riparian ecosystems. All genotypes in the hottest garden produced comparatively small leaves that decomposed quickly and supported lower abundances of aquatic invertebrates, whereas the same genotypes in the coldest garden produced litter with distinct morphologies and decomposition rates. Our results suggest that plastic responses to climate stress may constrict the expression of genetic variation in predictable ways that impact communities and ecosystems. Understanding these interactions between genetic and environmental variation is critical to our ability to plan for the role of foundation species when managing and restoring riparian ecosystems in a warming world. 
    more » « less