skip to main content


Title: The impact of AGN-driven winds on physical and observable galaxy sizes
ABSTRACT

Without active galactic nucleus (AGN) feedback, simulated massive, star-forming galaxies become too compact relative to observed galaxies at z ≲ 2. In this paper, we perform high-resolution re-simulations of a massive ($M_{\star }\sim 10^{11}\, \rm {{\rm M}_{\odot }}$) galaxy at z ∼ 2.3, drawn from the Feedback in Realistic Environments (FIRE) project. In the simulation without AGN feedback, the galaxy experiences a rapid starburst and shrinking of its half-mass radius. We experiment with driving mechanical AGN winds, using a state-of-the-art hyper-Lagrangian refinement technique to increase particle resolution. These winds reduce the gas surface density in the inner regions of the galaxy, suppressing the compact starburst and maintaining an approximately constant half-mass radius. Using radiative transfer, we study the impact of AGN feedback on the magnitude and extent of the multiwavelength continuum emission. When AGN winds are included, the suppression of the compact, dusty starburst results in lowered flux at FIR wavelengths (due to decreased star formation) but increased flux at optical-to-near-IR wavelengths (due to decreased dust attenuation, in spite of the lowered star formation rate), relative to the case without AGN winds. The FIR half-light radius decreases from ∼1 to $\sim 0.1\, \rm {kpc}$ in $\lesssim 40\, \rm {Myr}$ when AGN winds are not included, but increases to $\sim 2\, \rm {kpc}$ when they are. Interestingly, the half-light radius at optical-NIR wavelengths remains approximately constant over $35\, \rm {Myr}$, for simulations with and without AGN winds. In the case without winds, this occurs despite the rapid compaction, and is due to heavy dust obscuration in the inner regions of the galaxy. This work highlights the importance of forward-modelling when comparing simulated and observed galaxy populations.

 
more » « less
Award ID(s):
2108230 1715216 2009234 2108318 1713353 2009687
NSF-PAR ID:
10421336
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
523
Issue:
2
ISSN:
0035-8711
Page Range / eLocation ID:
p. 2409-2421
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    ABSTRACT The galaxy size–stellar mass and central surface density–stellar mass relationships are fundamental observational constraints on galaxy formation models. However, inferring the physical size of a galaxy from observed stellar emission is non-trivial due to various observational effects, such as the mass-to-light ratio variations that can be caused by non-uniform stellar ages, metallicities, and dust attenuation. Consequently, forward-modelling light-based sizes from simulations is desirable. In this work, we use the skirt  dust radiative transfer code to generate synthetic observations of massive galaxies ($M_{*}\sim 10^{11}\, \rm {M_{\odot }}$ at z = 2, hosted by haloes of mass $M_{\rm {halo}}\sim 10^{12.5}\, \rm {M_{\odot }}$) from high-resolution cosmological zoom-in simulations that form part of the Feedback In Realistic Environments project. The simulations used in this paper include explicit stellar feedback but no active galactic nucleus (AGN) feedback. From each mock observation, we infer the effective radius (Re), as well as the stellar mass surface density within this radius and within $1\, \rm {kpc}$ (Σe and Σ1, respectively). We first investigate how well the intrinsic half-mass radius and stellar mass surface density can be inferred from observables. The majority of predicted sizes and surface densities are within a factor of 2 of the intrinsic values. We then compare our predictions to the observed size–mass relationship and the Σ1−M⋆ and Σe−M⋆ relationships. At z ≳ 2, the simulated massive galaxies are in general agreement with observational scaling relations. At z ≲ 2, they evolve to become too compact but still star forming, in the stellar mass and redshift regime where many of them should be quenched. Our results suggest that some additional source of feedback, such as AGN-driven outflows, is necessary in order to decrease the central densities of the simulated massive galaxies to bring them into agreement with observations at z ≲ 2. 
    more » « less
  2. null (Ed.)
    ABSTRACT We perform a consistent comparison of the mass and mass profiles of massive (M⋆ > 1011.4 M⊙) central galaxies at z ∼ 0.4 from deep Hyper Suprime-Cam (HSC) observations and from the Illustris, TNG100, and Ponos simulations. Weak lensing measurements from HSC enable measurements at fixed halo mass and provide constraints on the strength and impact of feedback at different halo mass scales. We compare the stellar mass function (SMF) and the Stellar-to-Halo Mass Relation (SHMR) at various radii and show that the radius at which the comparison is performed is important. In general, Illustris and TNG100 display steeper values of α where $M_{\star } \propto M_{\rm vir}^{\alpha }$. These differences are more pronounced for Illustris than for TNG100 and in the inner rather than outer regions of galaxies. Differences in the inner regions may suggest that TNG100 is too efficient at quenching in situ star formation at Mvir ≃ 1013 M⊙ but not efficient enough at Mvir ≃ 1014 M⊙. The outer stellar masses are in excellent agreement with our observations at Mvir ≃ 1013 M⊙, but both Illustris and TNG100 display excess outer mass as Mvir ≃ 1014 M⊙ (by ∼0.25 and ∼0.12 dex, respectively). We argue that reducing stellar growth at early times in $M_\star \sim 10^{9-10} \, \mathrm{M}_{\odot }$ galaxies would help to prevent excess ex-situ growth at this mass scale. The Ponos simulations do not implement AGN feedback and display an excess mass of ∼0.5 dex at r < 30 kpc compared to HSC which is indicative of overcooling and excess star formation in the central regions. The comparison of the inner profiles of Ponos and HSC suggests that the physical scale over which the central AGN limits star formation is r ≲ 20 kpc. Joint comparisons between weak lensing and galaxy stellar profiles are a direct test of whether simulations build and deposit galaxy mass in the correct dark matter haloes and thereby provide powerful constraints on the physics of feedback and galaxy growth. Our galaxy and weak lensing profiles are publicly available to facilitate comparisons with other simulations. 
    more » « less
  3. ABSTRACT

    Radio-loud active galactic nuclei (RLAGNs) are a unique AGN population and were thought to be preferentially associated with supermassive black holes (SMBHs) at low accretion rates. They could impact the host galaxy evolution by expelling cold gas through the jet-mode feedback. In this work, we studied CO(6−5) line emission and continuum emission in a high-redshift radio galaxy, MRC 0152−209, at z = 1.92 using ALMA (Atacama Large Millimeter/submillimeter Array) up to a 0.024″ resolution (corresponding to ∼200 pc at z = 1.92). This system is a starburst major merger comprising two galaxies: the north-west (NW) galaxy hosting the RLAGN with jet kinetic power Ljet ≳ 2 × 1046  erg s−1 and the other galaxy to the south-east (SE). Based on the spectral energy distribution fitting for the entire system (NW+SE galaxies), we find an AGN bolometric luminosity LAGN, bol ∼ 3 × 1046  erg s−1 with a lower limit of ∼0.9 × 1046  erg s−1 for the RLAGN. We estimate the black hole mass through MBH–M⋆ scaling relations and find an Eddington ratio of λEdd ∼ 0.07–4 conservatively by adopting the lower limit of LAGN, bol and considering the dispersion of the scaling relation. These results suggest that the RLAGN is radiatively efficient and the powerful jets could be launched from a super-Eddington accretion disc. ALMA Cycle 6 observations further reveal a massive (${M}_\mathrm{H_2}=(1.1-2.3)\times 10^9\ \rm M_\odot$), compact (∼500 pc), and monopolar molecular outflow perpendicular to the jet axis. The corresponding mass outflow rate ($1200^{+300}_{-300}-2600^{+600}_{-600}\ \mathrm{M_\odot }\ \rm yr^{-1}$) is comparable with the star formation rate of at least $\sim 2100\ \mathrm{M_\odot }\ \rm yr^{-1}$. Depending on the outflowing molecular gas mass, the outflow kinetic power/LAGN, bol ratio of ∼0.008–0.02, and momentum boost factor of ∼3–24 agree with a radiative-mode AGN feedback scenario. On the other hand, the jets can also drive the molecular outflow within its lifetime of ∼2 × 105 yr without additional energy supply from AGN radiation. The jet-mode feedback is then capable of removing all cold gas from the host galaxy through the long-term, episodic launching of jets. Our study reveals a unique object where starburst activity, powerful jets, and rapid BH growth co-exist, which may represent a fundamental stage of AGN-host galaxy co-evolution.

     
    more » « less
  4. ABSTRACT We present the first detailed study of the spatially resolved dust continuum emission of simulated galaxies at 1 < z < 5. We run the radiative transfer code skirt on a sample of submillimetre-bright galaxies drawn from the Feedback In Realistic Environments (FIRE) project. These simulated galaxies reach Milky Way masses by z = 2. Our modelling provides predictions for the full rest-frame far-ultraviolet-to-far-infrared spectral energy distributions of these simulated galaxies, as well as 25-pc resolution maps of their emission across the wavelength spectrum. The derived morphologies are notably different in different wavebands, with the same galaxy often appearing clumpy and extended in the far-ultraviolet yet an ordered spiral at far-infrared wavelengths. The observed-frame 870-$\mu$m half-light radii of our FIRE-2 galaxies are ${\sim} 0.5\rm {-}4\, \rm {kpc}$, consistent with existing ALMA observations of galaxies with similarly high redshifts and stellar masses. In both simulated and observed galaxies, the dust continuum emission is generally more compact than the cold gas and the dust mass, but more extended than the stellar component. The most extreme cases of compact dust emission seem to be driven by particularly compact recent star formation, which generates steep dust temperature gradients. Our results confirm that the spatial extent of the dust continuum emission is sensitive to both the dust mass and star formation rate distributions. 
    more » « less
  5. ABSTRACT

    Negative feedback from accreting supermassive black holes is considered crucial in suppressing star formation and quenching massive galaxies. However, several models and observations suggest that black hole feedback may have a positive effect, triggering star formation by compressing interstellar medium gas to higher densities. We investigate the dual role of black hole feedback using cosmological hydrodynamic simulations from the Feedback In Realistic Environment (FIRE) project, incorporating a novel implementation of hyper-refined accretion-disc winds. Focusing on a massive, star-forming galaxy at z ∼ 2 ($M_{\rm halo} \sim 10^{12.5}\, {\rm M}_{\odot }$), we demonstrate that strong quasar winds with a kinetic power of ∼1046 erg s−1, persisting for over 20 Myr, drive the formation of a central gas cavity and significantly reduce the surface density of star formation across the galaxy’s disc. The suppression of star formation primarily occurs by limiting the availability of gas for star formation rather than by evacuating the pre-existing star-forming gas reservoir (preventive feedback dominates over ejective feedback). Despite the overall negative impact of quasar winds, we identify several potential indicators of local positive feedback, including (1) the spatial anticorrelation between wind-dominated regions and star-forming clumps, (2) higher local star formation efficiency in compressed gas at the edge of the cavity, and (3) increased contribution of outflowing material to local star formation. Moreover, stars formed under the influence of quasar winds tend to be located at larger radial distances. Our findings suggest that both positive and negative AGN feedback can coexist within galaxies, although the local positive triggering of star formation has a minor influence on global galaxy growth.

     
    more » « less