Abstract We introduce a contact invariant in the bordered sutured Heegaard Floer homology of a three-manifold with boundary. The input for the invariant is a contact manifold $$(M, \xi , \mathcal {F})$$ whose convex boundary is equipped with a signed singular foliation $$\mathcal {F}$$ closely related to the characteristic foliation. Such a manifold admits a family of foliated open book decompositions classified by a Giroux correspondence, as described in [LV20]. We use a special class of foliated open books to construct admissible bordered sutured Heegaard diagrams and identify well-defined classes $$c_D$$ and $$c_A$$ in the corresponding bordered sutured modules. Foliated open books exhibit user-friendly gluing behavior, and we show that the pairing on invariants induced by gluing compatible foliated open books recovers the Heegaard Floer contact invariant for closed contact manifolds. We also consider a natural map associated to forgetting the foliation $$\mathcal {F}$$ in favor of the dividing set and show that it maps the bordered sutured invariant to the contact invariant of a sutured manifold defined by Honda–Kazez–Matić.
more »
« less
A combinatorial description of the LOSS Legendrian knot invariant
In this paper, we observe that the hat version of the Heegaard Floer invariant of Legendrian knots in contact three-manifolds defined by Lisca-Ozsváth-Stipsicz-Szabó can be combinatorially computed. We rely on Plamenevskaya’s combinatorial description of the Heegaard Floer contact invariant.
more »
« less
- Award ID(s):
- 2104309
- PAR ID:
- 10421398
- Date Published:
- Journal Name:
- Journal of Knot Theory and Its Ramifications
- Volume:
- 31
- Issue:
- 13
- ISSN:
- 0218-2165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We show that all versions of Heegaard Floer homology, link Floer homology, and sutured Floer homology are natural. That is, they assign concrete groups to each based 3-manifold, based link, and balanced sutured manifold, respectively. Furthermore, we functorially assign isomorphisms to (based) diffeomorphisms, and show that this assignment is isotopy invariant. The proof relies on finding a simple generating set for the fundamental group of the “space of Heegaard diagrams,” and then showing that Heegaard Floer homology has no monodromy around these generators. In fact, this allows us to give sufficient conditions for an arbitrary invariant of multi-pointed Heegaard diagrams to descend to a natural invariant of 3-manifolds, links, or sutured manifolds.more » « less
-
We use Heegaard Floer homology to define an invariant of homology cobordism. This invariant is isomorphic to a summand of the reduced Heegaard Floer homology of a rational homology sphere equipped with a spin structure and is analogous to Stoffregen’s connected Seiberg–Witten Floer homology. We use this invariant to study the structure of the homology cobordism group and, along the way, compute the involutive correction terms $$\bar{d}$$ and $$\text{}\underline{d}$$ for certain families of three-manifolds.more » « less
-
Gay, David; Wu, Weiwei (Ed.)We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two. We use this corollary to show that the chain complex depicted by Ozsváth, Stipsicz, and Szabó to argue that there is no algebraic obstruction to the existence of knots with trivial epsilon invariant and non-trivial upsilon invariant cannot be realized as the knot Floer complex of a knot.more » « less
-
We give several criteria on a closed, oriented 3-manifold that will imply that it is the boundary of a (simply connected) 4-manifold that admits infinitely many distinct smooth structures. We also show that any weakly fillable contact 3-manifold, or contact 3-manifold with non-vanishing Heegaard Floer invariant, is the boundary of a simply connected 4-manifold that admits infinitely many distinct smooth structures each of which supports a symplectic structure with concave boundary, that is there are infinitely many exotic caps for any such contact manifold.more » « less
An official website of the United States government

